首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
洛谷 P1029 最大公约数和最小公倍数问题
】的更多相关文章
[洛谷P1029]最大公约数与最小公倍数问题 题解(辗转相除法求GCD)
[洛谷P1029]最大公约数与最小公倍数问题 Description 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件:1.P,Q是正整数;2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入格式:二个正整数x0,y0 输出格式:一个数,表示求出满足条件的P,Q的个数 Solution 1.由最大公约数的定义我们得到:存在k1,k2∈R,使P=k1x0,Q…
洛谷——P1029 最大公约数和最小公倍数问题
P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 复制 3 60 输出样例#1: 复制 4 说明 P,Q有4种…
洛谷P1029 最大公约数和最小公倍数问题 [2017年6月计划 数论02]
P1029 最大公约数和最小公倍数问题 题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 3 60 输出样例#1: 4 说明 P,Q有4种 3 60…
洛谷P1029 最大公约数和最小公倍数问题 题解
题目链接:https://www.luogu.com.cn/problem/P1029 题目描述 输入 \(2\) 个正整数 \(x_0,y_0(2 \le x_0 \lt 100000,2 \le y_0 \le 1000000)\) ,求满足下列条件的 \(P,Q\) 的个数. 条件: \(P,Q\) 是正整数: 要求 \(P,Q\) 以 \(x_0\) 为最大公约数,以 \(y_0\) 为最小公倍数. 试求:满足条件的所有可能的 \(2\) 个正整数的个数. 输入格式 \(2\) 个正整数…
洛谷 P1029 最大公约数和最小公倍数问题 Label:Water&&非学习区警告
题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 3 60 输出样例#1: 4 说明 P,Q有4种 3 60 15 12 12 15 60 3 代码…
洛谷P1029 最大公约数和最小公倍数问题
题目描述 输入二个正整数x0,y0(2<=x0<100000,2<=y0<=1000000),求出满足下列条件的P,Q的个数 条件: 1.P,Q是正整数 2.要求P,Q以x0为最大公约数,以y0为最小公倍数. 试求:满足条件的所有可能的两个正整数的个数. 输入输出格式 输入格式: 二个正整数x0,y0 输出格式: 一个数,表示求出满足条件的P,Q的个数 输入输出样例 输入样例#1: 3 60 输出样例#1: 4 说明 P,Q有4种 3 60 15 12 12 15 60 3 分析:…
洛谷P1029 最大公约数和最小公倍数问题 (简单数学题)
一直懒的写博客,直到感觉不写不总结没有半点进步,最后快乐(逼着)自己来记录蒟蒻被学弟学妹打压这一年吧... 题目描述 输入22个正整数x_0,y_0(2 \le x_0<100000,2 \le y_0<=1000000)x0,y0(2≤x0<100000,2≤y0<=1000000),求出满足下列条件的P,QP,Q的个数 条件: P,QP,Q是正整数 要求P,QP,Q以x_0x0为最大公约数,以y_0y0为最小公倍数. 试求:满足条件的所有可能的22个正整数的个数.…
洛谷 P1029 最大公约数和最小公倍数问题
有两种做法 一种是gcd与lcm相乘后就是两个数的乘积,枚举第一个数,算出第二数,看最大公约数是不是题目给的. 第二种就lcm/gcd的答案为两个互质的数相乘.然后就枚举有多少组互质的数相乘等于lcm / gcd就ok了 然后又小优化,可以只枚举到根号,然后结果乘以2就行了. #include<cstdio> #define _for(i, a, b) for(int i = (a); i <= (b); i++) using namespace std; int gcd(int a,…
洛谷P1029 最小公约数和最大公倍数问题【数论】
题目:https://www.luogu.org/problemnew/show/P1029 题意: 给定两个数$x$和$y$,问能找到多少对数$P$$Q$,使得他们的最小公约数是$x$最大公倍数是$y$ 思路: 我们知道两个数的最小公倍数是他们的乘积除以最大公约数. 也就是说我们可以把$P,Q$表示成 $P = k_1x, Q = k_2x, y = \frac{PQ}{x}$ 即$k_{1}k_{2}x = y$,且$k_1,k_2$互质 那么我们只用在$\frac{x}{y}$中找到有多少…
【数论】P1029 最大公约数和最小公倍数问题
题目链接 P1029 最大公约数和最小公倍数问题 思路 如果有两个数a和b,他们的gcd(a,b)和lcm(a,b)的乘积就等于ab. 也就是: ab=gcd(a,b)*lcm(a,b) 那么,接下来我们需要关注一下数据范围:2≤x0<=100000,2≤y0<=1000000 如果暴力枚举x0和y0,那么你就咕咕咕了. 然而,y0-x0的值是很小的,我们就会想,如果枚举y0-x0这个区间,会不会方便些呢?当然,很显然的是这个区间就是第一个数a. #include<iostream>…