【udacity】机器学习】的更多相关文章

机器学习入门项目分享 - 波士顿房价预测 该分享源于Udacity机器学习进阶中的一个mini作业项目,用于入门非常合适,刨除了繁琐的部分,保留了最关键.基本的步骤,能够对机器学习基本流程有一个最清晰的认识: 项目描述 利用马萨诸塞州波士顿郊区的房屋信息数据训练和测试一个模型,并对模型的性能和预测能力进行测试: 项目分析 数据集字段解释: RM: 住宅平均房间数量: LSTAT: 区域中被认为是低收入阶层的比率: PTRATIO: 镇上学生与教师数量比例: MEDV: 房屋的中值价格(目标特征,…
Coursera,Udacity,Edx 课程列表(更新ing) Coursera有很多特别好的课程,平时没有机会听到国外大牛的课程,通过Coursera算是可以弥补一下吧,国外的课程普遍比国内的老师教的好,深入浅出,真是一入Coursera深似海呀.通过在知乎和blog上查询,列了一个预备学习的课程表. 知乎里有个问答,觉得对第一次上Coursera的人很有帮助:第一次在 Coursera 学习,各位有什么好的建议? (其中有关于如何使用Coursera wiki,开课轮次,下载视频+中文字母…
本文转自:http://mp.weixin.qq.com/s/aAHbybdbs_GtY8OyU6h5WA 专题 | 深度强化学习综述:从AlphaGo背后的力量到学习资源分享(附论文) 原创 2017-01-28 Yuxi Li 机器之心 选自arXiv 作者:Yuxi Li 编译:Xavier Massa.侯韵楚.吴攀   摘要 本论文将概述最近在深度强化学习(Deep Reinforcement Learning)方面喜人的进展.本文将从深度学习及强化学习的背景知识开始,包括了对实验平台的…
评估指标 Evaluation metrics 机器学习性能评估指标 选择合适的指标 分类与回归的不同性能指标 分类的指标(准确率.精确率.召回率和 F 分数) 回归的指标(平均绝对误差和均方误差) 混淆矩阵(confusion matricess) 一.选择合适的指标 评估模型是否得到改善,总体表现如何 在构建机器学习模型时,我们首先要选择性能指标,然后测试模型的表现如何.相关的指标有多个,具体取决于我们要尝试解决的问题. 此外,在测试模型时,也务必要将数据集分解为训练数据和测试数据.如果不区…
Evernote Export 1.什么是回归? regression 在监督学习中,包括了输入和输出的样本,在此基础上,我们能够通过新的输入来表示结果,映射到输出 输出包含了离散输出和连续输出 2.回归与函数逼近 回归并不是指向平均值回落,而是使用函数形式来逼近一堆数据点 3.线性回归 什么是线性方程? 线性方程就是直线方程,可以理解为 Y=mx+b 这里的m是斜率,b是截距,这是一个线性方程而不是平面方程 什么是回归分析? 回归分析是统计的概念.这里的想法是观察数据和构建一个方程,使我们可以…
Evernote Export 机器学习的运行步骤 1.导入数据 没什么注意的,成功导入数据集就可以了,打印看下数据的标准格式就行 用个info和describe 2.分析数据 这里要详细分析数据的内容,看看缺省值和数据的特征,主要是为了看到数据的特征,并且人肉分析一下特征值对目标值的大约影响,嗯,就是这样 然后开始划分数据,将数据分为两个部分,一个数据的特征值(features),一个是数据的目标值(target) 这里要用到数据的基本操作,有数据清洗和数据整理等内容. 重点:数据的分割,这里…
import numpy as np import pandas as pd from Udacity.model_check.boston_house_price import visuals as vs # Supplementary code from sklearn.model_selection import ShuffleSplit # Pretty display for notebooks # 让结果在notebook中显示 # Load the Boston housing d…
Evernote Export 1.模型的评估与验证简介 机器学习通常是大量传入数据,然后会有一些关于数据的决策.想法和摘要. 2.模型评估 评估模型使用的是各种数据分析的方法,至少需要使用python编程和一些统计学的知识 9.用一个数据描述数据 通常情况下可以使用一个数字来对整个数据集进行描述 10.选择哪个数字 一般情况下,我们使用众数来对整个数据集的大多数来描述 12.众数-负偏斜分布 14.众数的更多信息! 众数是否可用于描述任何数据类型,数值型和类别型都可以? 数据集中的所有分支都会…
Evernote Export 2.人工智能简介 机器学习源自于人工智能,在此方向上,该领域有分为不同学派,机器学习主要关注的是制造能够自主动作的机器 3.人工智能难题 1.所有智能体都只有很少的计算资源.很低的处理速度和很小的内存,如何能让AI实时提供作用? 2.所有的计算都是局部的,但是大多数AI问题都具有全局约束,如何才能让AI解决全局问题? 3.计算逻辑基本上是演绎逻辑,但是许多AI本质上是溯因性或归纳性的,如何解决AI的溯因性问题? 4.世界是动态变化的,知识是有限的,但是AI智能体必…
Evernote Export 支持向量机(Support Vector Machine) 不适定问题不止一个决策边界 要找一个决策边界,不仅能将训练集很好的划分,而且提升模型的泛化能力 支持向量机直接将算法放在运行的内部,在不适定的问题中,使用svm去建模是好的 svm是统计学习中非常重要的方法 svm尝试寻找一个最优的决策边界,距离两个类别的最近的样本最远,距离决策边界最近的点称为支撑向量 svm算法要做的就是最大化margin,也就是要找到最大的d margin=2d 解析几何,点到直线的…