Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数:从牛棚_1到牛棚_i+1并且避免从牛棚1到牛棚i+1最短路经上最后一条牛路的最少的时间.如果这样的路经不存在,输出-1. Sample Input 4 5 1 2 2 1 3 2 3 4 4 3 2 1 2 4 3 输入解释: 跟题中例子相同 Sample Output 3 3 6 输出解释: 跟…
1576: [Usaco2009 Jan]安全路经Travel Time Limit: 10 Sec  Memory Limit: 64 MB Submit: 665  Solved: 227[Submit][Status] Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数:从牛棚_1到牛棚_i+1并且避免从牛棚1到牛棚i+1最短路经上最后一条牛…
有趣的思考题 Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数:从牛棚_1到牛棚_i+1并且避免从牛棚1到牛棚i+1最短路经上最后一条牛路的最少的时间.如果这样的路经不存在,输出-1. 题目分析 做法一 暴力树剖线段树 做法二 并查集[bzoj1576] [Usaco2009 Jan]安全路经Travel #include<bits/stdc++…
传送门 蒟蒻我原本还想着跑两边spfa,发现不行,就gg了. 首先这道题卡spfa,所以需要用堆优化的dijkstra求出最短路径 因为题目中说了,保证最短路径有且只有一条,所以可以通过dfs求出最短路径树 发现,需要给这课树加边,才能有别的路径到达一个点x 那么我们连接树上两个节点u,v,边权为w 发现,u,v到两点公共祖先的路径上的所有点(除去lca)的答案都会受到影响 且ans[i] = dis[u] + dis[v] + w - dis[i] 要使得ans最小,需要dis[u] + di…
首先用Dijkstra做出最短路生成树,设dis[p]为1到p点的最短路长度 对于一条不在生成树上的边u -> v,不妨设fa为u.v的lca 则一fa到v的路径上的任意点x都可以由u达到,走的方式是1 -> fa -> u -> v -> x,dis'[x] = dis[u] + dis(u, v) + dis[v] - dis[x] 于是可以用dis[u] + dis(u, v) + dis[v]更新fa到v的路径上的所有点 链剖一下,线段树lazytag就好了,连pus…
题意 给你一张无向图,保证从1号点到每个点的最短路唯一.对于每个点求出删掉号点到它的最短路上的最后一条边(就是这条路径上与他自己相连的那条边)后1号点到它的最短路的长度 Sol emmm,考场上想了个贪心开心的飞起然而只多得了10分qwq 正解比较神仙. 首先把最短路树建出来,考虑一条非树边$(u, v)$什么时候能更新答案 结论是:除了他们的LCA外的子树内其他都可以更新,且新的权值为$dis[u] + dis[v] + w(u, v) - dis[x]$,$x$表示新节点 这样我们把所有的边…
[BZOJ1576][Usaco2009 Jan]安全路经Travel Description Input * 第一行: 两个空格分开的数, N和M * 第2..M+1行: 三个空格分开的数a_i, b_i,和t_i Output * 第1..N-1行: 第i行包含一个数:从牛棚_1到牛棚_i+1并且避免从牛棚1到牛棚i+1最短路经上最后一条牛路的最少的时间.如果这样的路经不存在,输出-1. Sample Input 4 5 1 2 2 1 3 2 3 4 4 3 2 1 2 4 3 输入解释:…
[BZOJ1576] [BZOJ3694] [USACO2009Jan] 安全路径(最短路径+树链剖分) 题面 BZOJ1576和BZOJ3694几乎一模一样,只是BZOJ3694直接给出了最短路树 给出一个n个点m条边的无向图,n个点的编号从1~n,定义源点为1.定义最短路树如下:从源点1经过边集T到任意一点i有且仅有一条路径,且这条路径是整个图1到i的最短路径,边集T构成最短路树. 给出最短路树,求对于除了源点1外的每个点i,求最短路,要求不经过给出的最短路树上的1到i的路径的最后一条边.…
[题意] 给定一个无向图,找到1-i所有的次短路经,要求与最短路径的最后一条边不重叠. [思路] 首先用dijkstra算法构造以1为根的最短路树. 将一条无向边看作两条有向边,考察一条不在最短路树上的边(u,v),如果我们连接(u,v) ,设t=lct(u,v),则为v->t(不含t)路径上的点提供了另外一条1-x的路径且最后一条边不与最短路重合,这条路径长度为dis[u]+dis[v]+e.w-dis[x],对于每个点维护最小的mn=dis[u]+dis[v]+e.w,因为每次需要对一条路径…
题目链接: BZOJ - 1576 题目分析 首先Orz Hzwer的题解. 先使用 dijikstra 求出最短路径树. 那么对于一条不在最短路径树上的边 (u -> v, w) 我们可以先沿树边从 1 走到 u ,再走这条边到 v ,然后再沿树边向上,可以走到 (LCA(u, v), v] 的所有点 (不包括LCA(u, v)!!). 对于一个属于 (LCA(u, v), v] 的点 x,这种走法的距离为 d[u] + w + d[v] - d[x] ,那么我们就可以用 d[u] + w +…