没看出来动规怎么做,看到n <= 20,直接一波暴搜,过了. #include<cstdio> #include<cstring> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 25; int g[MAXN][MAXN], a[MAXN], f[MAXN]; int vis[MAXN],…
一开始看到题目感觉很难 然后看到题解感觉这题贼简单,我好像想复杂了 就算出每一行最少的资源(完全背包+二分)然后就枚举就好了. #include<cstdio> #include<algorithm> #include<cstring> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 212345; const int MAXM =…
这道题的难点在于价值可以多. 这道题我一开始用的是前面的状态推现在的状态 实现比较麻烦,因为价值可以多,所以就设最大价值 为题目给的最大价值乘以10 #include<cstdio> #include<algorithm> #include<cstring> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 1123; const in…
这道题的难点在于,前面分组的时间会影响到后面的结果 也就是有后效性,这样是不能用dp的 所以我们要想办法取消后效性 那么,我们就可以把影响加上去,也就是当前这一组加上了s 那么就把s对后面的影响全部加上 这个做法非常巧妙. #include<cstdio> #include<algorithm> #include<cstring> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace…
这道题题目给的顺序不是固定的 所以一开始要自己排序,按照w来排序 后来只要看l就可以了 然后求最长下降子序列即可(根据那个神奇的定理,LIS模板里有提到) #include<cstdio> #include<algorithm> #include<cstring> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 1123; struc…
f[i]表示从起点到第i个车站的最小费用 f[i] = min(f[j] + dist(i, j)), j < i 动规中设置起点为0,其他为正无穷 (貌似不用开long long也可以) #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; typedef long long ll; const int…
这道题写了我好久, 交上去90分,就是死活AC不了 后来发现我写的程序有根本性的错误,90分只是数据弱 #include<cstdio> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; const int MAXN = 2123; int dp[MAXN][MAXN], t[MAXN]; int f[MAXN], d[MAXN], h, n…
题目描述 对于一个递归函数w(a,b,c) 如果a<=0 or b<=0 or c<=0就返回值1. 如果a>20 or b>20 or c>20就返回w(20,20,20) 如果a<b并且b<c 就返回w(a,b,c-1)+w(a,b-1,c-1)-w(a,b-1,c) 其它别的情况就返回w(a-1,b,c)+w(a-1,b-1,c)+w(a-1,b,c-1)-w(a-1,b-1,c-1) 这是个简单的递归函数,但实现起来可能会有些问题.当a,b,c均为1…
一开始写了一个复杂度很大的方法,然后还过了(千万记得开longlong ) #include<cstdio> #include<cstring> #include<algorithm> #define REP(i, a, b) for(int i = (a); i < (b); i++) using namespace std; typedef long long ll; const int MAXN = 20; ll f[MAXN][MAXN][MAXN]; i…