#We will also standardise our data as we have done so far when performing distance-based clustering. from pyspark.mllib.feature import StandardScaler standardizer = StandardScaler(True, True) t0 = time() standardizer_model = standardizer.fit(parsed_d…
RESCALING attribute data to values to scale the range in [0, 1] or [−1, 1] is useful for the optimization algorithms, such as gradient descent, that are used within machine learning algorithms that weight inputs (e.g. regression and neural networks).…
原文:http://www.jianshu.com/p/94516a58314d Dataset transformations| 数据转换 Combining estimators|组合学习器 Feature extration|特征提取 Preprocessing data|数据预处理 1 Dataset transformations scikit-learn provides a library of transformers, which may clean (see Preproce…
注:本文是人工智能研究网的学习笔记 常用的数据预处理方式 Standardization, or mean removal and variance scaling Normalization: scaling individual to have unit norm Binarization: thresholding numerical features to get boolean values Encoding categorical feature Imputation of miss…