题目大意:两个人从2~n中随意取几个数(不取也算作一种方案),被一个人取过的数不能被另一个人再取.两个人合法的取法是,其中一个人取的任何数必须与另一个人取的每一个数都互质,求所有合法的方案数 (数据范围毕竟很小,乍一看也不是啥打表找规律的题) 和我之前做过的一道题很类似hdu 6125,但这道题由于题面看起来很玄学,所以正解更难想 但还是 状压DP+分组背包 的套路 因为500以内的任何一个数,只会有一个大于19的质因子,所以对2 3 5 7 11 13 17 19这8个质数进行状压,然后每个数…
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status][Discuss] Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即…
题目大意: 给出n和k,求从小于等于n的数中取出不超过k个,其乘积是无平方因子数的方案数.无平方因子数:不能被质数的平方整除. 题目分析: 10(枚举\(n\le8\)),40(简单状压\(n\le16\)),70(高级状压\(n\le30\)),100(正解状压n\le500,k\le500). 对于前百分之70,由于\(n\le30\),质数只有10个,直接状压水. 正解(状压dp+分组背包): 注意到1~n中每个数含有的大于\(\sqrt{n}\)的质因数最多有1种,而\(\sqrt{n}…
problem:给定N,K.表示你有数1到N,让你最多选择K个数,问有多少种方案,使得选择的数的乘积无平方因子数.N,K<500: solution:显然可以状压DP做,但是500以内的素数还是蛮多的,无法高效得DP.   但是我们注意到,大于sqer(N)的素数,同一类最多用一个,这不就是分组背包吗. 所以我们只有小于sqrt(N)的素数用常规的DP,否则用分组背包. dp[i][j]表示选择了i个数,其中小于sqrt(N)的素数状态为j. j<(1<<8): 分组背包:我们把个…
4197: [Noi2015]寿司晚宴 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 694  Solved: 440[Submit][Status][Discuss] Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即…
[NOI2015]寿司晚宴 题目描述 为了庆祝NOI的成功开幕,主办方为大家准备了一场寿司晚宴. 小G和小W作为参加NOI的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了n−1种不同的寿司,编号1,2,3,⋯,n-1,其中第种寿司的美味度为i+1(即寿司的美味度为从2到n). 现在小G和小W希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当: 小G品尝的寿司种类中存在一种美味度为x的寿司,小W品尝的寿司中存在一种美味度为y的寿司,而x与y不互质. 现在小G和小W希…
[BZOJ4197][Noi2015]寿司晚宴 Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n−1 种不同的寿司,编号 1,2,3,…,n−1,其中第 i 种寿司的美味度为 i+1 (即寿司的美味度为从 2 到 n). 现在小 G 和小 W 希望每人选一些寿司种类来品尝,他们规定一种品尝方案为不和谐的当且仅当:小 G 品尝的寿司种类中存在一种美味度为 x…
这个题一开始想到了唯一分解定理,然后状压.但是显然数组开不下,后来想到每个数(n<500)大于19的素因子只可能有一个,所以直接单独存就行了. 然后正常状压dp就很好搞了. 题干: Description 为了庆祝 NOI 的成功开幕,主办方为大家准备了一场寿司晚宴.小 G 和小 W 作为参加 NOI 的选手,也被邀请参加了寿司晚宴. 在晚宴上,主办方为大家提供了 n− 种不同的寿司,编号 ,,,…,n−,其中第 i 种寿司的美味度为 i+ (即寿司的美味度为从 到 n). 现在小 G 和小 W…
题目转化:将2~n的数分成两组,可以不选,使得这两组没有公共的质因子.求方案数. 选择了一个数,相当于选择了它的所有质因子. 30分: 发现,n<=30的时候,涉及到的质因子也就10个.2,3,5,7,11,13,19,23,29 直接状压.f[i][A][B] 前i个数,第一个人的质因子选择状态A,第二人B,的方案数.(第一维可以滚动,当然,可以倒序循环直接省略) 每个数质因数分解,前八个质因子,压成二进制数,转移直接按位或. 100分: 质因子太多状压不了. 公理:一个数>=sqrt(n)…
题面 传送门 思路 首先,要让两个人选的数字全部互质,那么有一个显然的充要条件:甲选的数字的质因数集合和乙选的数字的质因数集合没有交集 30pt 这种情况下n<=30,也就是说可用的质数只有10个,我们可以开个状压搞一搞 设$dp[S_1][S_2]$表示甲选择的质因数集合是$S_1$,乙是$S_2$的总情况数, 对于每个2-n分解质因数,把每个质因数是否出现状压起来存下来,dp的时候从前往后扫 那么可以刷表法做一波$dp[i][S_1|k][S_2]+=dp[i-1][S_1][S_2]$$(…