capsule network--<Dynamic Routing Between Capsules> from:https://zhuanlan.zhihu.com/p/31491520   Hinton大神前一段时间推出的capsule network--<Dynamic Routing Between Capsules>可谓是火了朋友圈,吸引了无数科研人员的眼球.现实生活中,无论你持什么样的观点,总有人站在“对立面”,比如知乎中不乏“高人”跳出来“怒喷”这篇论文.那些怒喷的回…
深度学习课程笔记(十一)初探 Capsule Network  2018-02-01  15:58:52 一.先列出几个不错的 reference: 1. https://medium.com/ai%C2%B3-theory-practice-business/understanding-hintons-capsule-networks-part-i-intuition-b4b559d1159b 2. https://medium.com/ai%C2%B3-theory-practice-bus…
Capsule Network最大的特色在于vector in vector out & 动态路由算法. vector in vector out 所谓vector in vector out指的是将原先使用标量表示的神经元变为使用向量表示的神经元.这也即是所谓的"Capsule","vector in vector out"或者"胶囊"所要表达的意思.按照Hinton的理解,每一个胶囊表示一个属性,而胶囊的向量则表示该特征的某些&quo…
文章:欲取代CNN的Capsule Network究竟是什么来头?它能为AI界带来革命性转折么? 文章:用于分类.检测和分割的移动网络 MobileNetV2 网络 文章:后RCNN时代的物体检测及分割进展 文章:在SceneParsing上准确率暂时得到第一的IceNet https://hszhao.github.io/projects/icnet/ 文章:https://arxiv.org/pdf/1704.08545.pdf GitHub代码:https://github.com/hsz…
官方教程中没有解释pooling层各参数的意义,找了很久终于找到,在tensorflow/python/ops/gen_nn_ops.py中有写: def _max_pool(input, ksize, strides, padding, name=None): r"""Performs max pooling on the input. Args: input: A `Tensor` of type `float32`. 4-D input to pool over. ks…
========================================================================================== 最近一直在看Deep Learning,各类博客.论文看得不少 但是说实话,这样做有些疏于实现,一来呢自己的电脑也不是很好,二来呢我目前也没能力自己去写一个toolbox 只是跟着Andrew Ng的UFLDL tutorial 写了些已有框架的代码(这部分的代码见github) 后来发现了一个matlab的Deep…
目录 1 神经网络 2 卷积神经网络 2.1 局部感知 2.2 参数共享 2.3 多卷积核 2.4 Down-pooling 2.5 多层卷积 3 ImageNet-2010网络结构 4 DeepID网络结构 5 参考资源 自今年七月份以来,一直在实验室负责卷积神经网络(Convolutional Neural Network,CNN),期间配置和使用过theano和cuda-convnet.cuda-convnet2.为了增进CNN的理解和使用,特写此博文,以其与人交流,互有增益.正文之前,先…
利用CNN卷积神经网络进行训练时,进行完卷积运算,还需要接着进行Max pooling池化操作,目的是在尽量不丢失图像特征前期下,对图像进行downsampling. 首先看下max pooling的具体操作:整个图片被不重叠的分割成若干个同样大小的小块(pooling size).每个小块内只取最大的数字,再舍弃其他节点后,保持原有的平面结构得出 output. 相应的,对于多个feature map,操作如下,原本64张224X224的图像,经过Max Pooling后,变成了64张112X…
import torch import torch.nn as nn import torchvision import torchvision.transforms as transforms # 配置GPU或CPU设置 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') # 超参数设置 num_epochs = 5 num_classes = 10 batch_size = 100 learning_…
22.编写一个类A,该类创建的对象可以调用方法showA输出小写的英文字母表.然后再编写一个A类的子类B,子类B创建的对象不仅可以调用方法showA输出小写的英文字母表,而且可以调用子类新增的方法showB输出大写的英文字母表.最后编写主类C,在主类的main方法 中测试类A与类B. package jicheng; public class A { public void showA() { System.out.println("asdfsdf"); } } package jic…