最近一堆题目要补,一直咸鱼,补了一堆水题都没必要写题解.备忘一下这个公式. Stirling公式的意义在于:当n足够大时,n!计算起来十分困难,虽然有很多关于n!的等式,但并不能很好地对阶乘结果进行估计,尤其是n很大之后,误差将会非常大.但利用Stirling公式可以将阶乘转化成幂函数,使得阶乘的结果得以更好的估计.而且n越大,估计得越准确. 传送门:_(:з」∠)_ 再来一个详细一点的,传送门:( ・´ω`・ ) Big Number Time Limit: 2000/1000 MS (Jav…
Big Number 题意:算n!的位数. 题解:对于一个数来算位数我们一般都是用while去进行计算,但是n!这个数太大了,我们做不到先算出来在去用while算位数. while(a){ cnt++; a/=; } 将一个数对取10对数(取整),然后再加一就是这个数的位数,然后我们在算n!的时候每次对10取对数就好了. #include<iostream> #include<cmath> using namespace std; int main() { ios::sync_wi…
Problem Description Inmany applications very large integers numbers are required. Some of theseapplications are using keys for secure transmission of data, encryption, etc.In this problem you are given a number, you have to determine the number ofdig…
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 40262 Accepted Submission(s): 19637 Problem Description In many applications very large integers numbers are required. Some of these…
Problem Description In many applications very large integers numbers are required. Some of these applications are using keys for secure transmission of data, encryption, etc. In this problem you are given a number, you have to determine the number of…
Big Number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 21106 Accepted Submission(s): 9498 Problem Description In many applications very large integers numbers are required. Some of these…