题目链接:hdu 3507 Print Article 题意: 每个字有一个值,现在让你分成k段打印,每段打印需要消耗的值用那个公式计算,现在让你求最小值 题解: 设dp[i]表示前i个字符需要消耗的最小值,那么有dp[i]=min{dp[k]+(sum[i]-sum[k])2+m)}(k<i). 这样是n2 的做法. 考虑用斜率优化: 设k<j,对于dp[i],从k+1到i为一段比j+1到i为一段更优. 那么有 dp[j]+(sum[i]-sum[j])2+m<=dp[k]+(sum[…
题目:http://acm.hdu.edu.cn/showproblem.php?pid=3507 设 f[i],则 f[i] = f[j] + (s[i]-s[j])*(s[i]-s[j]) + m 即 f[j] + s[j]*s[j] = 2*s[i]*s[j] + f[i] - s[i]*s[i] - m 于是维护下凸包即可: 写成 double 的 slp 总是不对,把分母乘到对面就对了... 代码如下: #include<iostream> #include<cstdio>…
Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 4810    Accepted Submission(s): 1451 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antique…
前几天做多校,知道了这世界上存在dp的优化这样的说法,了解了四边形优化dp,所以今天顺带做一道典型的斜率优化,在百度打斜率优化dp,首先弹出来的就是下面这个网址:http://www.cnblogs.com/ka200812/archive/2012/08/03/2621345.html 上面讲的很详细,但是实际上有些地方貌似是不小心写错了,所以我也来复述一下感悟一下收获. 首先题意是比较明确的,如果我们定义dp[i]为打印到第i个字符时的最小花费的话,显然有下面的转移: dp[i]=dp[j]…
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3507 Zero has an old printer that doesn't work well sometimes. As it is antique, he still like to use it to print articles. But it is too old to work for a long time and it will certainly wear and tear,…
Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 11761    Accepted Submission(s): 3586 Problem Description Zero has an old printer that doesn't work well sometimes. As it is antiqu…
题目链接:https://vjudge.net/problem/HDU-3507 Print Article Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 131072/65536 K (Java/Others)Total Submission(s): 14899    Accepted Submission(s): 4648 Problem Description Zero has an old printer that doe…
题意:需要打印n个正整数,1个数要么单独打印要么和前面一个数一起打印,1次打印1组数的代价为这组数的和的平方加上常数M.求最小代价. 思路:如果令dp[i]为打印前i个数的最小代价,那么有 dp[i]=min(dp[j]+(sum[i]-sum[j])2+M),j<i 直接枚举转移是O(n2)的,然而这个方程可以利用斜率优化将复杂度降到O(n). 根据斜率优化的一般思路,对当前考虑的状态i,考虑决策j和k(j<k),如果k比j优,那么根据转移方程有:dp[k]+(sum[i]-sum[k])2…
pid=3507">传送门 大意:打印一篇文章,连续打印一堆字的花费是这一堆的和的平方加上一个常数M. 首先我们写出状态转移方程 :f[i]=f[j]+(sum[i]−sum[j])2+M;f[i] = f[j] + (sum[i] - sum[j])^2 + M; 设 j 优于 k. 那么有 f[j]+(sum[i]−sum[j])2<f[k]+(sum[i]−sum[k])2f[j] + (sum[i] - sum[j])^2 移项得出 (f[j]+sum[j]2)−(f[k]+…
题目大意: 经典题 数学分析 G(a,b)<sum[i]时 a优于b G(a,b)<G(b,c)<sum[i]时 b必不为最优 #include <bits/stdc++.h> #define N 500005 using namespace std; int n,m,dp[N],deq[N],sum[N]; // deq[]为单调队列 sum[]为数组的前缀和 int DP(int i,int j) { return dp[j]+m+(sum[i]-sum[j])*(sum…