历时好几天,终于完工了! 支持无向图四种功能:1.割点的求解 2.割边的求解 3.点双连通分量的求解 4.边双连通分量的求解 全部支持重边!!!!全部支持重边!!!!全部支持重边!!!! 测试数据: 10 111 53 54 52 42 34 66 86 77 88 108 9 /* By:ZUFE_ZZT 该模板经过多次修改与研究,修正了很多错误,增加了很多功能. 无向图,完全支持重边!!完全支持重边!! [功能如下] 1.求割点的编号,以及去掉割点有多少连通分量 2.求点双连通分量 3.求割…
运用Tarjan算法,求解图的点/边双连通分量. 1.点双连通分量[块] 割点可以存在多个块中,每个块包含当前节点u,分量以边的形式输出比较有意义. typedef struct{ //栈结点结构 保存边 int front; int rear; }BNode; BNode block_edge[MAXL]; int top; //栈指针,指向下一个空位 int num_block; //块计数 int b1,b2; //存储块中的边 辅助信息[全局变量] void add(int *top,i…
嗯,首先边双连通分量(双连通分量之一)是:在一个无向图中,去掉任意的一条边都不会改变此图的连通性,即不存在桥(连通两个边双连通分量的边),称作边双连通分量.一个无向图的每一个极大边双连通子图称作此无向图的双连通分量. 对于边连通分量,我们需要先找出所有的桥,即为所有的桥做上标记. 首先要用dfs的性质来快速找出一个连通图中的所有的桥. 时间戳:表示在进行dfs的时候,每个节点被访问的先后顺序.每个节点会被标记两次,分别用 pre[],和post[]来表示. 在无向图中,只存在两种边,一种是树边(…
http://uoj.ac/problem/146 题解:强连通分量 tarjan模板题.同时试了一下codeblock #include<bits/stdc++.h> using namespace std; ; vector<int> E[maxn]; int dfn[maxn],low[maxn],tot,n,ans=maxn,vis[maxn]; stack<int> S; void tarjan(int x){ low[x]=dfn[x]=++tot; S.p…
#include<iostream> #include<cstdio> #include<algorithm> #include<cstring> #include<stack> #include<vector> using namespace std; #define maxn 7500 #define inf 0x3f3f3f3f int n,m; int g[maxn][maxn]; int clock; int low[max…
http://codeforces.com/gym/100712/attachments 题意是给定一个无向图,要求添加一条边,使得最后剩下的桥的数量最小. 注意到在环中加边是无意义的. 那么先把环都缩成一个点,然后重新建立一颗树,找出树的直径就好. #include <cstdio> #include <cstdlib> #include <cstring> #include <cmath> #include <algorithm> #incl…
题目链接:http://poj.org/problem?id=1523 题意:给出无向图的若干条边,求割点以及各个删掉其中一个割点后将图分为几块. 题目分析:割点用tarjan算法求出来,对于每个割点,dfs一次图,求出有几块不连通的子图. AC代码: #include<cstdio> #include<cstring> +; struct EDGE{ int v,next; }edge[N*N/]; int first[N],low[N],dfn[N],cut[N],vis[N]…
原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ30.html 题目传送门 - UOJ#30 题意 uoj写的很简洁.清晰,这里就不抄一遍了. 题解 首先建出圆方树.接下来,我们称"圆点"为原来有的点,"方点"为新增的点. 然后先只考虑在线询问如何做. ——把方点的值设置成所有与他连边的圆点的权值的最小值,直接在圆方树上树链剖分再套个线段树支持一下区间询问即可. 然后会发现这样做支持不了修改操作. ——直接来个菊花图不断修…
#include <bits/stdc++.h> using namespace std; const int MAXN = 20005; const int MAXM = 100005; int n, m, fir[MAXN], nxt[MAXM<<1], to[MAXM<<1], cnt=1; int dfn[MAXN], low[MAXN], tot; int cur, Ans[MAXN]; bool is_bridge[MAXM<<1]; void…
hdu 5409 题目大意:给出一张简单图,求对应输入的m条边,第i-th条边被删除后,哪两个点不连通(u,v,u<v),若有多解,使得u尽量大的同时v尽量小. 解题过程:拿到题面的第一反应缩点,然后就没有然后了,因为输出的奇葩要求,确实是没有想到,而且之前tarjan面对的是有向图,而这题是无向图,显然没有强连通分量(百度后得知:有向图叫作强连通,无向图称为双连通,有点双,边双之分,此题是边双),加之这题的神奇输出,就算要求任意解,笔者也不会写,于是纠结了大半小时,就题解走起来. 题解:无向图…
Redundant Paths 分离的路径 题目描述 In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of o…
N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel between any two planets through these channels.  If we can isolate some planets from others by breaking only one channel , the chann…
Warm up Time Limit:5000MS     Memory Limit:65535KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 4612 Description N planets are connected by M bidirectional channels that allow instant transportation. It's always possible to travel bet…
PS:摘自一不知名的来自大神. 1.割点:若删掉某点后.原连通图分裂为多个子图.则称该点为割点. 2.割点集合:在一个无向连通图中,假设有一个顶点集合,删除这个顶点集合,以及这个集合中全部顶点相关联的边以后.原图变成多个连通块.就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必定会分裂为两个或两个以上的子图. 5.割边集合:假设有一个边集合.删除这个边集合以后,原图变成多个连通块.就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最…
图论算法-Tarjan模板 [缩点:割顶:双连通分量] 为小伙伴们总结的Tarjan三大算法 Tarjan缩点(求强连通分量) int n; int low[100010],dfn[100010]; bool ins[100010]; int col[100010];//记录每个点所属强连通分量(即染色) vector<int> map[100010]; stack<int> st; int tot;//时间戳 int colnum;//记录强连通分量个数 void tarjan(…
基本概念 给定无向连通图G = (V, E)割点:对于x∈V,从图中删去节点x以及所有与x关联的边之后,G分裂为两个或两个以上不相连的子图,则称x为割点割边(桥)若对于e∈E,从图中删去边e之后,G分裂成两个不相连的子图,则称e为G的桥或割边 时间戳在图的深度优先遍历过程中,按照每个节点第一次被访问的时间顺序,依次给予N个节点1~N的整数标记,该标记被称为“时间戳”,记为dfn[x] 搜索树在无向连通图中任选一个节点出发进行深度优先遍历吗,每个节点只访问一次.所有发生递归的边(x, y)构成一棵…
这篇介绍如何用Tarjan算法求Double Connected Component,即双连通分量. 双联通分量包括点双连通分量v-DCC和边连通分量e-DCC. 若一张无向连通图不存在割点,则称它为“点双连通图”,不存在桥则称为“边双连通图”. 无向图的极大点双连通子图就v-DCC,极大边双连通子图就是e-DCC. 上一篇我们讲了如何用Tarjan算法求出无向图中的所有割点和桥. 不会求的朋友们可以去看一看上篇文章:Tarjan算法求无向图的割点和桥 这里“极大”的定义可以理解为包含部分点的最…
// tarjan算法求无向图的桥.边双连通分量并缩点 #include<iostream> #include<cstdio> #include<cstring> #include<algorithm> #include<vector> using namespace std; ; ], Next[SIZE * ]; int dfn[SIZE], low[SIZE], c[SIZE]; int n, m, tot, num, dcc, tc; ]…
题解转自http://blog.csdn.net/lyy289065406/article/details/6762370   文中部分思路或定义模糊,重写的红色部分为修改过的. 大致题意: 某个企业想把一个热带天堂岛变成旅游胜地,岛上有N个旅游景点,保证任意2个旅游景点之间有路径连通的(可间接连通).而为了给游客提供更方便的服务,该企业要求道路部门在某些道路增加一些设施. 道路部门每次只会选择一条道路施工,在该条道路施工完毕前,其他道路依然可以通行.然而有道路部门正在施工的道路,在施工完毕前是…
概述 在一个无向图中,若任意两点间至少存在两条“点不重复”的路径,则说这个图是点双连通的(简称双连通,biconnected) 在一个无向图中,点双连通的极大子图称为点双连通分量(简称双连通分量,Biconnected Component,BCC) 性质 任意两点间至少存在两条点不重复的路径等价于图中删去任意一个点都不会改变图的连通性,即BCC中无割点 若BCC间有公共点,则公共点为原图的割点 无向连通图中割点一定属于至少两个BCC,非割点只属于一个BCC 算法 在Tarjan过程中维护一个栈,…
2730: [HNOI2012]矿场搭建 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1602  Solved: 751[Submit][Status][Discuss] Description 煤矿工地可以看成是由隧道连接挖煤点组成的无向图.为安全起见,希望在工地发生事故时所有挖煤点的工人都能有一条出路逃到救援出口处.于是矿主决定在某些挖煤点设立救援出口,使得无论哪一个挖煤点坍塌之后,其他挖煤点的工人都有一条道路通向救援出口.请写一个程序,用…
一.基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边…
基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数.…
Tarjan算法应用 (割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)问题)(转载) 转载自:http://hi.baidu.com/lydrainbowcat/blog/item/2194090a96bbed2db1351de8.html 基本概念: 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连…
为什么写这道题还是因为昨天多校的第二题,是道图论,HDU 4612. 当时拿到题目的时候就知道是道模版题,但是苦于图论太弱.模版都太水,居然找不到. 虽然比赛的时候最后水过了,但是那个模版看的还是一知半解,主要还是对于无向图缩点不了解. 所以今天特意找了道求无向图边双连通分量,然后缩点的题学习一下,这道题的缩点和昨天那道差不多,唯一的区别就是这是无重边的,那题是有重边的. 先搞掉这个,下午把有重边的缩点搞一下. 这里给出一些概念.具体可以到神牛博客看一下. 边连通度:使一个子图不连通的需要删除掉…
接上一节Tarjan算法初探(2):缩点 在此首先提出几个概念: 割点集合:一个无向连通图G 若删除它的一个点集 以及点集中所有点相连的边(任意一端在点集中)后 G中有点之间不再连通则称这个点集是它的一个割点集合 割边集合:一个无向连通图G 若删除它的一个边集 G中有点之间不再连通则称这个边集是它的一个割边集合 图的点联通度:无向连通图的最小割点集合中元素的个数是一张无向连通图的点连通度 图的边联通度:无向连通图的最小割边集合中元素的个数是一张无向连通图的边联通度 割点:如果一个无向连通图的点连…
 http://blog.csdn.net/geniusluzh/article/details/6619575 在说Tarjan算法解决桥和边双连通分量问题之前我们先来回顾一下Tarjan算法是如何求解强连通分量的. Tarjan算法在求解强连通分量的时候,通过引入dfs过程中对一个点访问的顺序dfsNum(也就是在访问该点之前已经访问的点的个数)和一个点可以到达的最小的dfsNum的low数组,当我们遇到一个顶点的dfsNum值等于low值,那么该点就是一个强连通分量的根.因为我们在dfs的…
[Codeforces 555E]Case of Computer Network(Tarjan求边-双连通分量+树上差分) 题面 给出一个无向图,以及q条有向路径.问是否存在一种给边定向的方案,使得这q条路径都能被满足.(如果有一条边是从a->b),而经过它的路径是从b->a,那么久不满足).只需要判断,不用输出方案. 分析 对于一个有向环,显然它可以允许各个方向的路径通过.所以我们只要把无向图里的边-双联通分量建成环,然后就不用考虑了.影响答案的只有桥. 所以我们求出所有桥,然后缩点,把图…
题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条path是分立的独立的,意为不能有公共道路,问最少添加多少条道路达成题目的要求. 图论问题,因为题目要求不能有公共道路,就是路径不能有公共边.题目转化为求图的边双连通分量,每个边双连通分量内各个牧场肯定存在不同路径可以相互到达,所以要求出图内有多少个边双连通分量,缩点后添边去满足题意.最终缩点后的图为树,…
题目连接:http://codeforces.com/contest/962/problem/F 题目大意是定义一个simple cycle为从一个节点开始绕环走一遍能经过simple cycle内任何一个节点,并且不超过一次. 因为是无向图,而且是环,即为连通分量,所以模型转化为求点双连通分量,依据题意求得的点双连通分量需要满足题目simple cycle的定义,所以当一个点双连通分量的边数量和点数量相等时才能构成simple cycle,在tarjan求割点的时候,需要存储点双联通分量的点和…