1. 摘要 作者提出了一个前所未有高效的新奇网络结构,称之为 CondenseNet,该结构结合了密集连接性和可学习的分组卷积模块. 密集连接性有利于网络中的特征复用,而可学习的分组卷积模块则可以移除多余的特征复用之间的连接.在测试的时候,训练好的模型可以使用标准的分组卷积来实现,在实际中计算非常高效. 2. 介绍和相关工作 深度学习模型一般都是在多个 GPU 上进行训练,然后再在计算资源有限的移动设备上进行部署.因此,一个好的网络结构应该允许训练阶段可以快速并行,而在测试的时候可以压缩. 一层…
论文笔记-IGCV3:Interleaved Low-Rank Group Convolutions for Efficient Deep Neural Networks 2018年07月11日 14:05:46 Liven_Zhu 阅读数 846   介绍 在这篇论文中,作者同时使用低秩核和稀疏核(low-rank and sparse kernel)来组成一个密集kernel.基于ICGV2的基础上,作者提出了ICGV3. 近几年,卷积网络在计算机视觉上的有效性已经得到了验证.目前卷积网络的…
深度学习被引起关注是在2012年,用神经网络训练的一个分类模型在ImagNet上取得了第一名,而且其分类精度比第二名高出10多个点,当时所使用的模型为AlexNet,现在看来其为一个比较简单的网络,而且只有比较浅的八层网络,但是在当时来讲已经很了不起了.这也就引发了后面对神经网络研究的两个方向,以提高网络的分类精度:1.网络变得更深更宽(Going Deeper):2.减少网络中存在的冗余性(Eliminate the Redundancy). 研究增加网络的深度(Going Deeper).比…
CondenseNet特点在于可学习分组卷积的提出,结合训练过程进行剪枝,不仅能准确地剪枝,还能继续训练,使网络权重更平滑,是个很不错的工作   来源:晓飞的算法工程笔记 公众号 论文:Neural Architecture Search with Reinforcement Learning 论文地址:https://arxiv.org/abs/1711.09224 论文代码:https://github.com/ShichenLiu/CondenseNet Introduction   De…
目录 写在前面 Convolution VS Group Convolution Group Convolution的用途 参考 博客:blog.shinelee.me | 博客园 | CSDN 写在前面 Group Convolution分组卷积,最早见于AlexNet--2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下: Convolution VS Group Convolution 在介绍Gro…
执行GROUP BY子句的最一般的方法:先扫描整个表,然后创建一个新的临时表,表中每个组的所有行应为连续的,最后使用该临时表来找到组 并应用聚集函数.在某些情况中,MySQL通过访问索引就可以得到结果,此类查询的 EXPLAIN 输出显示 Extra 列的值为 Using index for group-by. 一.松散索引扫描 The most efficient way to process GROUP BY is when an index is used to directly retr…
IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, October 22-29, 2017. IEEE Computer Society 2017, ISBN 978-1-5386-1032-9 Oral Session 1 Globally-Optimal Inlier Set Maximisation for Simultaneous Camera Pose and Feature Corre…
接上一篇:AI:IPPR的数学表示-CNN基础结构进化(Alex.ZF.Inception.Res.InceptionRes). 抄自于各个博客,有大量修改,如有疑问,请移步各个原文.....  前言:AutoML-NasNet VGG结构和INception结构.ResNet基元结构的出现,验证了通过反复堆叠小型inception结构可以构建大型CNN网络,而构建过程可以通过特定的规则自动完成.自动完成大型网络的稀疏性构建出现了一定的人为指导,如Mobile.xception.Shuffle.…
1. Abstract 本文旨在简单介绍下各种轻量级网络,纳尼?!好吧,不限于轻量级 2. Introduction 2.1 Inception 在最初的版本 Inception/GoogleNet,其核心思想是利用多尺寸卷积核去观察输入数据.举个栗子,我们看某个景象由于远近不同,同一个物体的大小也会有所不同,那么不同尺度的卷积核观察的特征就会有这样的效果.于是就有了如下的网络结构图: 图1: Inception module, naive version 于是我们的网络就变胖了,通过增加网络的…
ShuffleNet系列是轻量级网络中很重要的一个系列,ShuffleNetV1提出了channel shuffle操作,使得网络可以尽情地使用分组卷积来加速,而ShuffleNetV2则推倒V1的大部分设计,从实际出发,提出channel split操作,在加速网络的同时进行了特征重用,达到了很好的效果 来源:晓飞的算法工程笔记 公众号 ShuffleNet V1 论文: ShuffleNet: An Extremely Efficient Convolutional Neural Netwo…