机器学习模型解释工具-Lime】的更多相关文章

本篇文章转载于LIME:一种解释机器学习模型的方法 该文章介绍了一种模型对单个样本解释分类结果的方法,区别于对整体测试样本的评价指标准确率.召回率等,Lime为具体某个样本的分类结果做出解释,直观地表明该模型为何做出如此预测. 动机:我们为什么要理解预测结果? 机器学习如今是非常火的一个话题.随着计算机在围棋等游戏中击败人类专家,许多人不禁要问机器是否也能胜任司机的工作,甚至是取代医生? 现在很多前沿的机器学习模型还是一个黑盒,几乎无法去感知它的内部工作状态.这就给我们带来了可信度的问题:我该相…
[导读]斯坦福大学的人工智能课程"CS 221"至今仍然是人工智能学习课程的经典之一.为了方便广大不能亲临现场听讲的同学,课程官方推出了课程笔记CheatSheet,涵盖4大类模型. 斯坦福大学的人工智能课程"CS 221",这门铁打的课程从2011年开始已经走过了8个年头,流水的讲师换了一批又一批,送走的毕业生一拨又一拨,至今仍然是人工智能学习的经典课程之一.目前2019年春季课程正在如火如荼的开展中. 这门课程是没有教科书的,所有内容都蕴含在讲师的教案以及课后作…
https://blog.csdn.net/starzhou/article/details/72819374 2017-05-27 19:15:36     GMIS 2017    10 0 5 月 27 日,机器之心主办的为期两天的全球机器智能峰会(GMIS 2017)在北京 898 创新空间顺利开幕.中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃为本次大会做了开幕式致辞,他表示:「我个人的看法是再过几年,我们90%的工作是人工智能提供的,就像我们今天大部分工作是机器提供…
scikit-learn系列之如何存储和导入机器学习模型   如何存储和导入机器学习模型 找到一个准确的机器学习模型,你的项目并没有完成.本文中你将学习如何使用scikit-learn来存储和导入机器学习模型.你可以把你的模型保持到文件中,然后再导入内存进行预测. 1. 用Pickle敲定你的模型 Pickle是python中一种标准的序列化对象的方法.你可以使用pickle操作来序列化你的机器学习算法,保存这种序列化的格式到一个文件中.稍后你可以导入这个文件反序列化你的模型,用它进行新的预测.…
一.概述   对于由Python训练的机器学习模型,通常有pickle和pmml两种部署方式,pickle方式用于在python环境中的部署,pmml方式用于跨平台(如Java环境)的部署,本文叙述的是pmml的跨平台部署方式.   PMML(Predictive Model Markup Language,预测模型标记语言)是一种基于XML描述来存储机器学习模型的标准语言.如,对在Python环境中由sklearn训练得到的模型,通过sklearn2pmml模块可将它完整地保存为一个pmml格…
  基于房价数据,在python中训练得到一个线性回归的模型,在JavaWeb中加载模型完成房价预测的功能. 一. 训练.保存模型 工具:PyCharm-2017.Python-39.sklearn2pmml-0.76.1. 1.训练数据house_price.csv No square_feet price 1 150 6450 2 200 7450 3 250 8450 4 300 9450 5 350 11450 6 400 15450 7 600 18450 2.训练.保存模型 impo…
核心能力素质模型数据库 1. 工作态度 通用 (1)热爱本职工作,对工作充满信心 (2)在没有明确的规定或领导指示的情况下,能够积极主动地承担职责范围内的各项工作,并能够积极地配合其他同事/部门工作 (3)工作态度认真负责,一丝不苟 (4)在特殊情况下,能够承受艰苦的工作条件,为工作牺牲一定的个人利益 (5)能够乐观地面对各种工作挑战,并勇于承担责任开拓创新通用   2.开拓创新 通用 (1)乐于接受有一定难度的任务,对有挑战性的工作感到兴奋 (2)主动要求新的任务和工作,为自己设定具有挑战性的…
在当前计算机应用中,对快速并行计算的需求是广泛的,归纳起来,主要有三种类型的应用需求: 计算密集(Computer-Intensive)型应用,如大型科学project计算与数值模拟: 数据密集(Data-Intensive)型应用,如数字图书馆.数据仓库.数据挖掘和计算可视化等: 网络密集(Network-Intensive)型应用,如协同工作.遥控和远程医疗诊断等. 并行编程模型主要有三种:适用于共享内存的多线程编程模型.适用于分布内存的消息传递编程模型,混合编程模型. 在计算机系统中.处理…
2.并行编程模型和工具 – MPI – MPI(Message Passing Interface)是一种消息传递编程模型,服务于进程通信.它不特指某一个对它的实现,而是一种标准和规范的代表,它是一种库描述,而不是一种语言,易于使用且具有高可移植性.说白了就是一些编程接口. – OpenMP – Open Multi-Processing是适用于共享内存多处理器体系结构的可移植并行编程模型,接口由SGI公司发起.包含编译指导.运行函数库和环境变量三部分,具有串行等价性(无论使用一个还是多个线程运…
老李分享: 并行计算基础&编程模型与工具   在当前计算机应用中,对高速并行计算的需求是广泛的,归纳起来,主要有三种类型的应用需求: 计算密集(Computer-Intensive)型应用,如大型科学工程计算与数值模拟: 数据密集(Data-Intensive)型应用,如数字图书馆.数据仓库.数据挖掘和计算可视化等: 网络密集(Network-Intensive)型应用,如协同工作.遥控和远程医疗诊断等. 并行编程模型主要有三种:适用于共享内存的多线程编程模型,适用于分布内存的消息传递编程模型,…