使用spark ml pipeline进行机器学习】的更多相关文章

一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习…
一.关于spark ml pipeline与机器学习一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习问…
Spark ML Pipeline基于DataFrame构建了一套High-level API,我们可以使用MLPipeline构建机器学习应用,它能够将一个机器学习应用的多个处理过程组织起来,通过在代码实现的级别管理好每一个处理步骤之间的先后运行关系,极大地简化了开发机器学习应用的难度.        Spark ML Pipeline使用DataFrame作为机器学习输入输出数据集的抽象.DataFrame来自Spark SQL,表示对数据集的一种特殊抽象,它也是Dataset(它是Spar…
一.pipeline 一个典型的机器学习过程从数据收集开始,要经历多个步骤,才能得到需要的输出.这非常类似于流水线式工作,即通常会包含源数据ETL(抽取.转化.加载),数据预处理,指标提取,模型训练与交叉验证,新数据预测等步骤. 在介绍工作流之前,我们先来了解几个重要概念: DataFrame:使用Spark SQL中的DataFrame作为数据集,它可以容纳各种数据类型. 较之 RDD,包含了 schema 信息,更类似传统数据库中的二维表格.它被 ML Pipeline 用来存储源数据.例如…
http://www.ibm.com/developerworks/cn/opensource/os-cn-spark-practice5/…
一.关于spark ml pipeline与机器学习 一个典型的机器学习构建包含若干个过程 1.源数据ETL 2.数据预处理 3.特征选取 4.模型训练与验证 以上四个步骤可以抽象为一个包括多个步骤的流水线式工作,从数据收集开始至输出我们需要的最终结果.因此,对以上多个步骤.进行抽象建模,简化为流水线式工作流程则存在着可行性,对利用spark进行机器学习的用户来说,流水线式机器学习比单个步骤独立建模更加高效.易用. 受 scikit-learn 项目的启发,并且总结了MLlib在处理复杂机器学习…
本文主要对 Spark ML库下模型评估指标的讲解,以下代码均以Jupyter Notebook进行讲解,Spark版本为2.4.5.模型评估指标位于包org.apache.spark.ml.evaluation下. 模型评估指标是指测试集的评估指标,而不是训练集的评估指标 1.回归评估指标 RegressionEvaluator Evaluator for regression, which expects two input columns: prediction and label. 评估…
下面代码按照之前参加Kaggle的python代码改写,只完成了模型的训练过程,还需要对test集的数据进行转换和对test集进行预测. scala 2.11.12 spark 2.2.2 package ML.Titanic import org.apache.spark.SparkContext import org.apache.spark.sql._ import org.apache.spark.sql.functions._ import org.apache.spark.ml.fe…
        前一节从宏观角度给大家介绍了Spark ML的设计框架(链接:http://www.cnblogs.com/jicanghai/p/8570805.html),本节我们将介绍,Spark ML中,机器学习问题从单机到分布式转换的核心方法.         单机时代,如果我们想解决一个机器学习的优化问题,最重要的就是根据训练数据,计算损失函数和梯度.由于是单机环境,什么都好说,只要公式推导没错,浮点数计算溢出问题解决好,就好了.但是,当我们的训练数据量足够大,大到单机根本存储不下的…
地址: http://spark.apache.org/docs/2.0.0/ml-pipeline.html   Spark PipeLine 是基于DataFrames的高层的API,可以方便用户构建和调试机器学习流水线 可以使得多个机器学习算法顺序执行,达到高效的数据处理的目的   DataFrame是来自Spark SQL的ML DataSet 可以存储一系列的数据类型,text,特征向量,Label和预测结果   Transformer:将DataFrame转化为另外一个DataFra…