Augmentor 使用介绍 原图 random_distortion(probability, grid_height, grid_width, magnitude) 最终选择参数为 p.random_distortion(probability=0.8, grid_height=3, grid_width=3, magnitude=6) 其他参数效果: magnitude和grid_width,grid_height越大,扭曲程度越大 p.random_distortion(probabil…
1.1 简介 深层神经网络一般都需要大量的训练数据才能获得比较理想的结果.在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合. 在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise) 笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Es…
原文发表在我的博客主页,转载请注明出处 前言 这个库是在阅读别人的源码的时候看到的,觉得十分好用,然而在网上找到的相关资料甚少,所以阅读了源码来做一个简单的用法总结.在网络的路由表中,经常会通过掩码来表示流表的匹配域,在python中有的时候为了方便的模拟流表的匹配过程,可以通过一个整数区间来表示诸如IP等的匹配范围,而本文介绍的库在区间处理上是十分的强大与方便. 用法举例 不论是在Linux系统还是Windows系统上,我们都可以方便的安装pip或者easy_install库来方便的安装大多数…
4.2深度卷积网络 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9迁移学习 迁移学习的基础知识已经介绍过,本篇博文将介绍提高的部分. 提高迁移学习的速度 可以将迁移学习模型冻结的部分看做为一个函数,因为每次都要使用这个冻结模型的输出值来训练自己的网络层,这样从加载模型到预训练模型都会耗费一定的时间. 为此,可以将目标训练集通过冻结模型的输出保存到本地,作为新的训练数据集来训练自己的网络层,这样会更加快捷. 提高迁移学习的精度 如果自身的目标数据集与冻结模型所用的数据集差异较大或者…
Augmentor和imgaug--python图像数据增强库 Tags: ComputerVision Python 介绍两个图像增强库:Augmentor和imgaug,Augmentor使用比较简单,只有一些简单的操作. imgaug实现的功能更多,可以对keypoint, bounding box同步处理,比如你现在由一些标记好的数据,只有同时对原始图片和标记信息同步处理,才能有更多的标记数据进行训练.我在segmentation和detection任务经常使用imgaug这个库. Au…
Python图像处理库 - Albumentations,可用于深度学习中网络训练时的图片数据增强. Albumentations 图像数据增强库特点: 基于高度优化的 OpenCV 库实现图像快速数据增强. 针对不同图像任务,如分割,检测等,超级简单的 API 接口. 易于个性化定制. 易于添加到其它框架,比如 PyTorch. 1. Albumentations 的 pip 安装 sudo pip install albumentations # 或 sudo pip install -U…
本文首发于个人博客https://kezunlin.me/post/8db507ff/,欢迎阅读最新内容! keras data augmentation Guide code # import the necessary packages from keras.preprocessing.image import ImageDataGenerator from keras.preprocessing.image import img_to_array from keras.preprocess…
博客作者:凌逆战 博客地址:https://www.cnblogs.com/LXP-Never/p/13404523.html 音频时域波形具有以下特征:音调,响度,质量.我们在进行数据增强时,最好只做一些小改动,使得增强数据和源数据存在较小差异即可,切记不能改变原有数据的结构,不然将产生"脏数据",通过对音频数据进行数据增强,能有助于我们的模型避免过度拟合并变得更加通用. 我发现对声波的以下改变是有用的:Noise addition(增加噪音).增加混响.Time shifting(…
在Python数据可视化中,seaborn较好的提供了图形的一些可视化功效. seaborn官方文档见链接:http://seaborn.pydata.org/api.html countplot是seaborn库中分类图的一种,作用是使用条形显示每个分箱器中的观察计数.接下来,对seaborn中的countplot方法进行详细的一个讲解,希望可以帮助到刚入门的同行. 导入seaborn库 import seaborn as sns 使用countplot sns.countplot() cou…
最近遇到数据样本数目不足的问题,自己写的增强工具生成数目还是不够,终于在网上找到一个数据增强工具包,足够高级,足够傻瓜.想要多少就有多少!再也不怕数据不够了! 简介 Augmentor是一个Python包,旨在帮助机器学习任务的图像数据人工生成和数据增强.它主要是一种数据增强工具,但也将包含基本的图像预处理功能. 特色 Augmentor是用于图像增强的软件包,重点在于提供通常用于生成机器学习问题的图像数据的操作. Augmentor包含许多用于标准图像处理功能的类,例如Rotate 旋转类.C…