Titanic数据分析】的更多相关文章

一.材料准备 https://www.kaggle.com/c/titanic-gettingStarted/ 二.提出问题 生存率和哪些因素有关(性别,年龄,是否有伴侣,票价,舱位等级,包间,出发地点) 1.乘客的年龄和票价的分布 2.样本生存的几率是多少 3.乘客的性别比例 4.乘客的舱位分布 5.性别和生还有没有关系 6.舱位等级和生还有没有关系 7.年龄和生还有没有关系 8.出发地点和生存率有没有关系 9.票价和生还有没有关系 10.有陪伴的乘客的生还几率是否更高 三.编写代码和做出图形…
Titanic是kaggle上的一道just for fun的题,没有奖金,但是数据整洁,拿来练手最好不过啦. 这道题给的数据是泰坦尼克号上的乘客的信息,预测乘客是否幸存.这是个二元分类的机器学习问题,但是由于数据样本相对较少,在当时慌乱的情况下幸存者有一定的随机性,还是有一定挑战的.https://www.kaggle.com/c/titanic-gettingStarted/ 一 载入数据 首先,我们要先看一看数据,分析数据的一些较为直观的特征.代码使用numpy pandas和scikit…
完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Titanic系列之派生属性&维归约 之前的三篇博文已经进行了一次还算完整的特征工程,分析字符串类型的变量获取新变量,对数值变量进行规范化,获取派生属性并进行维规约.现在我们已经有了一个特征集,可以进行训练模型了. 由于这是一个分类问题,可以使用L1 SVM 随机森林等分类算法,随机森林是一个非常简单而…
完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Titanic系列之派生属性&维归约 为什么有的机器学习项目成功了有的却失败了呢?毕竟算法是有限的改进也是有限的,最主要的因素就是特征的选择了.如果我们有一些与类别非常相关同时又相互独立的特征,学习起来是很容易的,相反就不一定了.通常情况下,并不是直接把原始数据作为特征,而是从中构建一些特征.这是机器学…
完整代码: https://github.com/cindycindyhi/kaggle-Titanic 特征工程系列: Titanic系列之原始数据分析和数据处理 Titanic系列之数据变换 Titanic系列之派生属性&维归约 缺失值填充之后,就要对其他格式有问题的属性进行处理了.比如Sex Embarked这些属性的值都是字符串类型的,而scikit learn中的模型都只能处理数值型的数据,需要将这些原始的字符串类型的数据转为数值型数据.所有数据通常可以分成两种类型:定量与定性.定量的…
为什么要使用Colab 使用过Jupyter(参看<「极客时间」带来的社区价值思考>章节:社区交流的基建设施)的朋友,一定会醉心于它干净简洁的设计,以及在"摆脱Python命令行运行"上提供的优质服务.某种意义上讲,Jupyter的简洁设计,非常适合于初学编程的朋友.因为从整体看,整个Jupyter所提供的界面像是学生时代老师提供的PPT演讲大纲.而唯一不同的是,在Jupyter里面,那些作为示例文档的代码,可以被真实运行起来.对于真正从事过教学和喜欢探索的人来讲,这个优雅…
原kaggle比赛地址:https://www.kaggle.com/c/titanic 原kernel地址:A Data Science Framework: To Achieve 99% Accuracy 问题处理之前要知道的事: 数据科学框架(A Data Science Framework) 1.定义问题(Define the Problem): 问题→需求→方法→设计→技术,这是刚开始拿到问题的解决流程,所以在我们用一些fancy的技巧和算法解决问题之前,必须要明确我们需要解决的问题到…
自从入了数据挖掘的坑,就在不停的看视频刷书,但是总觉得实在太过抽象,在结束了coursera上Andrew Ng 教授的机器学习课程还有刷完一整本集体智慧编程后更加迷茫了,所以需要一个实践项目来扎实之前所学的知识.于是就参考kaggle上的starter项目Titanic,并选取了kernel中的一篇较为祥尽的指南,从头到尾实现了一遍.因为kaggle入门赛相关方面的参考和指导非常少,因此写博给需要学习的同学做个小参考,也记录下数据挖掘的学习历程.新手上路,如果博文有误或缺失,还希望各位大神指正…
简介 import pandas as pd # 在数据挖掘前一个数据分析.筛选.清理的多功能工具 ''' pandas 可以读入excel.csv等文件:可以创建Series序列,DataFrame表格,日期数组data_range ''' 数据类型 # 将excel文件,csv文件读取并转换为pandas的DataFrame # df_score = pd.read_csv() df_score = pd.read_excel('./score.xlsx') # df_score.value…
 下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模型不准确或者特征提取不够,对于特征提取不够问题,可以根据模型的反馈来看其和数据的相关性,如果相关系数是0,则放弃特征,如果过低,说明特征需要再次提炼! 4.用集成学习,bagging等通常可以获得更高的准确度! 5.缺失数据可以使用决策树回归进行预测! 转自:http://blog.csdn.net…