Python一维数据分析】的更多相关文章

1.Numpy数组 numpy的数组只能存放同一种数据类型,使用的方式和Python列表类似 1.1 声明: import numpy as np countries = np.array([ 'Afghanistan', 'Albania', 'Algeria', 'Angola', 'Argentina', 'Armenia', 'Australia', 'Austria', 'Azerbaijan', 'Bahamas', 'Bahrain', 'Bangladesh', 'Barbado…
概念理解 索引即通过一个无符号整数值获取数组里的值. 切片即对数组里某个片段的描述. 一维数组 一维数组的索引 一维数组的索引和Python列表的功能类似: 一维数组的切片 一维数组的切片语法格式为array[index1:index2],意思是从index1索引位置开始,到index2索引(不包括index2)位置结束的一段数组.例如: 当把一个值赋值为一个切片时,该值会作用于此数组片段里每一个元素,例如: 二维数组 二维数组的索引 当以一维数组的索引方式访问一个二维数组的时候,获取的元素不在…
一.pandas 是什么 pandas 是基于 NumPy 的一个 Python 数据分析包,主要目的是为了数据分析.它提供了大量高级的数据结构和对数据处理的方法. pandas 有两个主要的数据结构:Series 和 DataFrame. 二.Series Series 是一个一维数组对象 ,类似于 NumPy 的一维 array.它除了包含一组数据还包含一组索引,所以可以把它理解为一组带索引的数组. 将 Python 数组转换成 Series 对象: 将 Python 字典转换成 Serie…
matplotlib API入门 使用matplotlib的办法最常用的方式是pylab的ipython,pylab模式还会向ipython引入一大堆模块和函数提供一种更接近与matlab的界面,matplotlib API函数位于matplotlib.pyplot模块中,其通常的引入约定是:import matplot.pyplot as plt 1.Figure和Subplot matplotlib的图像都位于Figure对象中,你可以用plt.figure创建一个新的Figure,不能通过…
利用Python进行数据分析--Numpy基础:数组和矢量计算 ndarry,一个具有矢量运算和复杂广播能力快速节省空间的多维数组 对整组数据进行快速运算的标准数学函数,无需for-loop 用于读写磁盘数据的工具以及用于操作内存映射文件的工具? 线性代数.随机数生成以及傅里叶变换功能 用于集成C/C++等代码的工具 一.ndarry:一种多维数组对象 1.创建ndarry #一维 In [5]: data = [1,2,3] In [6]: import numpy as np In [7]:…
最近在阅读<利用Python进行数据分析>,本篇博文作为读书笔记 ,记录一下阅读书签和实践心得. 准备工作 python环境配置好了,可以参见我之前的博文<基于Python的数据分析(1):配置安装环境>.还需要安装第三方包包括NumPy.pandas.matplotlib.IPython.SciPy.用pip安装工具下载自动安装即可,如果有网络问题,请在自行百度"host google"更新host文件. 接下来是配置IPython,初步感受了这个与之前接触的…
总结一下自己对python常用包:Numpy,Pandas,Matplotlib,Scipy,Scikit-learn 一. Numpy: 标准安装的Python中用列表(list)保存一组值,可以用来当作数组使用,不过由于列表的元素可以是任何对象,因此列表中所保存的是对象的指 针.这样为了保存一个简单的[1,2,3],需要有3个指针和三个整数对象.对于数值运算来说这种结构显然比较浪费内存和CPU计算时间. 此外Python还提供了一个array模块,array对象和列表不同,它直接保存数值,和…
转自https://zhuanlan.zhihu.com/p/26100976 目录: 5.1 pandas 的数据结构介绍5.1.1 Series5.1.2 DataFrame5.1.3索引对象5.2基本功能 5.2.1重新索引5.2.2丢弃指定轴上的项5.2.3索引.选取和过滤5.2.4算术运算和数据对齐5.2.4.1在算术方法中填充值5.2.4.2 DataFrame和Series之间的运算5.2.5函数应用和映射5.2.6排序和排名5.2.7带有重复的轴索引5.3汇总和计算描述性统计5.…
以此记录阅读和学习<利用Python进行数据分析>这本书中的觉得重要的点! 第一章:准备工作 1.一组新闻文章可以被处理为一张词频表,这张词频表可以用于情感分析. 2.大多数软件是由两部分代码组成:少量需要占用大部分执行时间的代码,以及大量不经常执行的“粘合剂代码”. cython已经成为python领域中创建编译型扩展以及对接c/c++代码的一大途径. 3.在那些要求延迟性非常小的应用程序中(例如高频交易系统),为了尽最大可能地优化性能,耗费时间使用诸如C++这样更低级.更低生产率的语言进行…
<利用Python进行数据分析·第2版>第四章 Numpy基础:数组和矢量计算 numpy高效处理大数组的数据原因: numpy是在一个连续的内存块中存储数据,独立于其他python内置对象.其C语言编写的算法库可以操作内存而不必进行其他工作.比起内置序列,使用的内存更少(即时间更快,空间更少) numpy可以在整个数组上执行复杂的计算,而不需要借助python的for循环 4.0 前提知识 数据:结构化的数据代指所有的通用数据,如表格型,多维数组,关键列,时间序列等 相关包:numpy pa…
利用Python进行数据分析-Pandas: 在Pandas库中最重要的两个数据类型,分别是Series和DataFrame.如下的内容主要围绕这两个方面展开叙述! 在进行数据分析时,我们知道有两个基础的第三方库在数据处理时显得尤为重要,即分别为NumPy库和Pandas库,前面的章节我们对于NumPy的入门有了详细的介绍,这个章节我们主要是对于Pandas库进行系统的总结.说一点题外话,之前对于学习知识的时候,基本上都是在网上看视频,但是看视频的时候,当时基本上都能够理解并且觉得很简单,也没有…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 首先,需要导入pandas库的Series和DataFrame In [21]: from pandas import Series,DataFrame In [22]: import pandas as pd Series 是一种类似一维数组的对象,是一组数据与索引的组合.如果没设置索引,默认会加上. In [23]: obj = Series([4,3,5,7,8,1,2]) In…
<利用Python进行数据分析·第2版>第五章 pandas入门--基础对象.操作.规则 python引用.浅拷贝.深拷贝 / 视图.副本 视图=引用 副本=浅拷贝/深拷贝 浅拷贝/深拷贝区别 浅拷贝:拷贝对象的副本,但内部子对象还是引用(如果list内还有小list,小list改变会使原对象变化 .copy/python切片/ * 运算 深拷贝:父对象子对象副本全都拷贝,没有引用 .deepcopy 第五章:pandas入门 pandas: Series:类数组数据结构 DataFrame:…
pandas 提供了三种主要方法可以对数据进行合并: pandas.merge()方法:数据库风格的合并: pandas.concat()方法:轴向连接,即沿着一条轴将多个对象堆叠到一起: 实例方法combine_first()方法:合并重叠数据. pandas.merge()方法:数据库风格的合并   例如,通过merge()方法将两个DataFrame合并: on='name'的意思是将name列当作键: 默认情况下,merge做的是内连接(inner),即键的交集. 其他方式还有左连接(l…
pandas 对象拥有一些常用的数学和统计方法.   例如,sum() 方法,进行列小计:   sum() 方法传入 axis=1 指定为横向汇总,即行小计:   idxmax() 获取最大值对应的索引:   还有一种汇总是累计型的,cumsum(),比较它和 sum() 的区别: unique() 方法用于返回数据里的唯一值:   value_counts() 方法用于统计各值出现的频率:   isin() 方法用于判断成员资格:   安装步骤已经在首篇随笔里写过了,这里不在赘述.利用 Pyt…
一.reindex() 方法:重新索引 针对 Series   重新索引指的是根据index参数重新进行排序. 如果传入的索引值在数据里不存在,则不会报错,而是添加缺失值的新行. 不想用缺失值,可以用 fill_value 参数指定填充值. 例如:   fill_value 会让所有的缺失值都填充为同一个值,如果不想这样而是用相邻的元素(左或者右)的值填充,则可以用 method 参数,可选的参数值为 ffill 和 bfill,分别为用前值填充和用后值填充: 针对 DataFrame   重新…
一.NumPy 是什么 NumPy 是 Python 科学计算的基础包,它专为进行严格的数字处理而产生.在之前的随笔里已有更加详细的介绍,这里不再赘述. 利用 Python 进行数据分析(一)简单介绍 二.ndarray 是什么 ndarray 是一个多维的数组对象,具有矢量算术运算能力和复杂的广播能力,并具有执行速度快和节省空间的特点. ndarray 的一个特点是同构:即其中所有元素的类型必须相同. 三.ndarray 的创建 array() 函数 最简单的方法, 使用 NumPy 提供的…
http://www.cnblogs.com/batteryhp/p/4868348.html 第一章 准备工作 今天开始码这本书--<利用python进行数据分析>.R和python都得会用才行,这是码这本书的原因.首先按照书上说的进行安装,google下载了epd_free-7.3-1-win-x86.msi,译者建议按照作者的版本安装,EPDFree包括了Numpy,Scipy,matplotlib,Chaco,IPython.这里的pandas需要自己安装,对应版本为pandas-0.…
利用Python进行数据分析--Ipython 一.Ipython一些常用命令 1.TAB自动补全 2.变量+? 显示相关信息 3.函数名+??可以获取函数的代码 4.使用通配符* np.load? 5.%run +文件名.py 可以直接执行另外一个脚本 6._和__会保存最近的两个输出结果 7._iX和_X x为行号会输出第X行的输入和输出 二.键盘快捷键 1.CTRL+P 向前命令 2.CTRL+N 向后命令 3.CTRL+R 按行搜索历史 4.CTRL+C终止程序 5.CTRL+A光标移动…
利用Python进行数据分析--重要的Python库介绍 一.NumPy 用于数组执行元素级计算及直接对数组执行数学运算 线性代数运算.傅里叶运算.随机数的生成 用于C/C++等代码的集成 二.pandas 快速便捷的处理结构化数据,DataFrame是一个面向列的二维表数据 兼具NumPy的数组计算功能以及电子表格和关系型数据库的数据处理功能 可以快速的重塑.切片和切块以及选取数据子集 三.SciPy 主要介绍以下包: scipy.integrate 数值积分例程和微分方程求解器 scipy.…
在上一篇文章<基于Python的数据分析(1):配置安装环境>中的第四个步骤中我们在python的启动步骤中强制要求加载sitecustomize.py文件并设置其默认编码为"utf-8".本篇文章会介绍为什么要增加这个文件以及如何处理python的字符串编码的问题. 字符串变量和unicode值 字符串变量是所有编程语言里面定义多字符的一种变量类型. 在python中我们必须区分清楚字符串变量和unicode值这两个的区别.在其他的语言或者在python3.0以上的版本中…
数据分析是一个历史久远的东西,但是直到近代微型计算机的普及,数据分析的价值才得到大家的重视.到了今天,数据分析已经成为企业生产运维的一个核心组成部分. 据我自己做数据分析的经验来看,目前数据分析按照使用工具可以分为大体四类: 基于Excel的数据分析,Excel自带的函数.数据透视表.宏等功能对于数据分析来说十分适用且好用:基于matlib.SAS.SPSS等专业统计软件,我自己用过一段时间的SAS,觉得功能十分全面,但是作为程序员使用又觉得限制太多不够自由:基于SQL+数据库的数据分析,这一类…
利用Python进行数据分析--pandas入门 基于NumPy建立的 from pandas importSeries,DataFrame,import pandas as pd 一.两种数据结构 1.Series 类似于Python的字典,有索引和值 创建Series #不指定索引,默认创建0-N In [54]: obj = Series([1,2,3,4,5]) In [55]: obj Out[55]: 0 1 1 2 2 3 3 4 4 5 dtype: int64 #指定索引 In…
<利用Python进行数据分析·第2版> 第 1 章 准备工作第 2 章 Python 语法基础,IPython 和 Jupyter第 3 章 Python 的数据结构.函数和文件第 4 章 NumPy 基础:数组和矢量计算第 5 章 pandas 入门第 6 章 数据加载.存储与文件格式第 7 章 数据清洗和准备第 8 章 数据规整:聚合.合并和重塑第 9 章 绘图和可视化第 10 章 数据聚合与分组运算第 11 章 时间序列第 12 章 pandas 高级应用第 13 章 Python 建…
资料下载地址: 链接:https://pan.baidu.com/s/1y1C0bJPkSn7Sv6Eq9G5_Ug 提取码:vscu <利用Python进行数据分析(第二版)>高清中文版PDF+高清英文版PDF+配套源代码 高清中文版PDF,带目录和书签,能够复制粘贴:高清英文版PDF,带目录和书签,能够复制粘贴:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:其中,高清中文版如图:…
Excel是数据分析中最常用的工具,本篇文章通过python与excel的功能对比介绍如何使用python通过函数式编程完成excel中的数据处理及分析工作.在Python中pandas库用于数据处理 ,我们从1787页的pandas官网文档中总结出最常用的36个函数,通过这些函数介绍如何通过python完成数据生成和导入,数据清洗,预处理,以及最常见的数据分类,数据筛选,分类 汇总,透视等最常见的操作. 文章内容共分为9个部分.这是第一篇,介绍前3部分内容,数据表生成,数据表查看,和数据清洗.…
https://www.jb51.net/article/63216.htm 像 Excel 一样使用 python 进行数据分析 :  https://www.cnblogs.com/nxld/p/6756492.html…
1.  python进行数据分析----线性回归 2. python进行数据分析------相关分析 3. python进行数据分析---python3卡方 4. 多重响应分析,多选题二分法思路 5. 交叉表思路,未发布 6. 比较均值分析思路 7. 排序题如何进行数据分析 8.python 二元Logistics Regression 回归分析(LogisticRegression) 9.python因子分析…
1.2 Why Python for Data Analysis?(为什么使用Python做数据分析) 这节我就不进行过多介绍了,Python近几年的发展势头是有目共睹的,尤其是在科学计算,数据处理,AI方面,否则大家也不会来看这本书了. 使用Python的一些优点 Python是一门胶水语言,可以把不同语言整合起来,比如上层代码使用Python编写,底层代码用C,C++等语言实现. 解决了两种语言的问题.以前做研究用一门语言写原型(比如R,SAS),效果好了才会用其他语言去重新实现一遍(比如J…
第一章 准备工作 1.1 What Is This Book About(这本书是关于什么的) 1.2 Why Python for Data Analysis?(为什么使用Python做数据分析) 1.3 Essential Python Libraries(一些重要的Python库) 1.4 Installation and Setup(安装和设置) 1.5 Community and Conferences(社区和讨论组)+ 私货 1.6 Navigating This Book(本书导航…