题意 给出一个二进制数\(n\),每次操作可以将一个整数\(x\)简化为\(x\)的二进制表示中\(1\)的个数,如果一个数简化为\(1\)所需的最小次数为\(k\),将这个数叫做特殊的数, 问从\(1\)到\(n\)一共有多少个特殊的数,答案对\(1e9+7\)取模. 分析 \(n\)最大为\(2^{1000}\),二进制表示中最多有\(1000\)个\(1\),所以\(n\)以内的数经过一次简化后将变为\(1000\)以内的数,我们可以暴力打表\(1000\)以内的数简化为\(1\)所需的最…