ML—高斯判别分析】的更多相关文章

华电北风吹 天津大学认知计算与应用重点实验室 日期:2015/12/11 高斯判别分析属于生成模型,模型终于学习一个特征-类别的联合概率. 0 多维正态分布 确定一个多维正态分布仅仅须要知道分布的均值向量μ∈Rn×1\mu\in R^{n\times 1}和一个协方差矩阵Σ∈Rn×n\Sigma\in R^{n\times n}. 其概率密度函数例如以下: p(x;μ,Σ)=1(2π)n/2|Σ|1/2exp(−12(x−μ)TΣ−1(x−μ))(0)p(x;\mu,\Sigma)=\frac{…
转载请注明:http://blog.csdn.net/xinzhangyanxiang/article/details/9285001 该系列笔记1-5pdf下载请猛击这里. 本篇博客为斯坦福ML公开课第五个视频的笔记,主要内容包括生成学习算法(generate learning algorithm).高斯判别分析(Gaussian DiscriminantAnalysis,GDA).朴素贝叶斯(Navie Bayes).拉普拉斯平滑(Laplace Smoothing).…
如果在我们的分类问题中,输入特征xx是连续型随机变量,高斯判别模型(Gaussian Discriminant Analysis,GDA)就可以派上用场了. 以二分类问题为例进行说明,模型建立如下: 样本输入特征为x∈Rnx∈Rn,其类别y∈{0,1}y∈{0,1}: 样本类别yy服从参数为ϕϕ的伯努力分布,即y∼Bernoulli(ϕ)y∼Bernoulli(ϕ): 两类样本分别服从不同的高斯分布,即x|y=0∼N(μ0,Σ),x|y=1∼N(μ1,Σ)x|y=0∼N(μ0,Σ),x|y=1∼…
高斯判别分析(附Matlab实现) 生成学习算法 高斯判别分析(Gaussian Discriminant analysis,GDA),与之前的线性回归和Logistic回归从方法上讲有很大的不同,GDA是一种生成学习算法(Generative Learning Algorithms),而之前的属于判别学习算法(Discriminative Learning Algorithms). 它们的主要区别是: 判别学习算法是直接训练出p(y|x): 生成学习算法是分别训练出各个类别的概率模型,之后再用…
参考: cs229讲义 机器学习(一):生成学习算法Generative Learning algorithms:http://www.cnblogs.com/zjgtan/archive/2013/06/08/3127490.html 首先,简单比较一下前几节课讲的判别学习算法(Discriminative Learning Algorithm)和本节课讲的生成学习算法(Generative Learning Algorithm)的区别. eg:问题:Consider a classificat…
(一)生成学习算法 在线性回归和Logistic回归这种类型的学习算法中我们探讨的模型都是p(y|x;θ),即给定x的情况探讨y的条件概率分布.如二分类问题,不管是感知器算法还是逻辑回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例,只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以称为判别学习方法.   而生成学习算法则是对两个类别分别进行建模,用新的样例去匹配两个模板,匹配度较高的作为新样例的类别,比如分辨大象(y=1)和狗(y=0),首先,观察大象,然后建立一…
第四部分: 1.生成学习法 generate learning algorithm 2.高斯判别分析 Gaussian Discriminant Analysis 3.朴素贝叶斯 Navie Bayes 4.拉普拉斯平滑 Navie Bayes 一.生成学习法generate learning algorithm: 二类分类问题,不管是感知器算法还是逻辑斯蒂回归算法,都是在解空间中寻找一条直线从而把两种类别的样例分开,对于新的样例只要判断在直线的哪一侧即可:这种直接对问题求解的方法可以成为判别学…
一.高斯混合模型 软分类算法,即对每一个样本,计算其属于各个分布的概率,概率值最大的就是这个样本所属的分类. 对于训练样本的分布,看成为多个高斯分布加权得到的.其中每个高斯分布即为某一特定的类. 高斯混合模型和高斯判别分析非常像,唯一的区别就是在高斯混合模型中,每个样本所属的类别标签是未知的. 为了计算每个样本属于各个分布的概率Z,对每个高斯分布的参数进行初始化,然后以此计算概率Z,再根据Z来对所有参数进行优化,直到收敛. 二.EM算法 1.Jensen不等式 若二阶导数的不等号方向逆转(f(x…
华电北风吹 日期:2015/12/12 朴素贝叶斯算法和高斯判别分析一样同属于生成模型.但朴素贝叶斯算法须要特征条件独立性如果,即样本各个特征之间相互独立. 一.朴素贝叶斯模型 朴素贝叶斯算法通过训练数据集学习联合概率分布p(x,y),其中x=(x1,x2,...,xn)∈Rn,y∈R.详细的对于K分类问题就是须要学习一个类别的先验概率分布p(y=ck),k=1,2,...,K和每一个类别下的条件概率分布(如式1-1) p(x|y)=p(x1,x2,...,xn|y)(1-1) 因为朴素贝叶斯算…
高斯判别分析模型(Gaussian Discriminant Analysis ,GDA) 当我们分类问题的输入特征$x $为连续值随机变量时,可以用高斯判别分析模型(Gaussian Discriminant Analysis ,GDA).高斯判别分析模型通过多元正态分布来建模前面提到的概率 \(p(x | y)\).具体的,这个模型为, \[ \begin{equation} \begin{aligned} y & \sim \operatorname{Bernoulli}(\phi) \\…