题目链接题意介绍了一遍Nim取石子游戏,可以看上一篇文章详细介绍.问当前状态的必胜走法个数,也就是走到必败状态的方法数. 我们设sg为所有个数的Xor值.首先如果sg==0,它不可能有必胜走法,输出0. 对于任意一堆有a[i]个石子,若sg Xor a[i] <= a[i] ,那么我们就可以在a[i]里面取出sg Xor a[i]个石子,使得剩下石子Xor和为0,于是ans++.然后输出ans. 注意C/C++语言中^操作比<操作优先级低. #include<iostream> #…
题目链接有两堆石子,数量任意,可以不同.游戏开始由两个人轮流取石子.游戏规定,每次有两种不同的取法,一是可以在任意的一堆中取走任意多的石子:二是可以在两堆中同时取走相同数量的石子.最后把石子全部取完者为胜者.现在给出初始的两堆石子的数目,如果轮到你先取,假设双方都采取最好的策略,问最后你是胜者还是败者.(中文题面,感动ing) 但是这道题实在是呵呵.开始没啥思路,根据必胜状态必败状态的定义,n^3打了个表,看起来是这样的. 图为100x100,已经缩小,左上角是状态(0,0),右下角状态为(10…
题目链接题意:如图,Georgia和Bob在玩游戏.一个无限长的棋盘上有N个旗子,第i个棋子的位置可以用Pi表示.现在Georgia先走.每个人每一次可以把一枚棋子向左移动任意个格子,但是不能超越其他棋子,也不能和其他棋子处在同一个格子里.如果轮到某一个人的时候Ta再也不能移动棋子了,就判负.现在每个测试数据给定一种情况,如果Georgia会赢,输出“Georgia will win”,如果Bob会赢,输出“Bob will win”,如果不确定,输出“Not sure”.两个人都知道获胜策略是…
题目链接题意:有n堆石子,两人轮流操作,每次每个人可以从一堆中拿走若干个扔掉(必须),并且可以从中拿走一些分到别的有石子的堆里(可选),当一个人不能拿时这个人输.给定状态,问是否先手必胜. 我们参考普通取石子游戏可知,如果只有一堆,先手必胜.如果有两堆一样,先手必败,对称博弈,第一个人怎么取,第二个人也可以怎么取,直到第一个人无法取为止.如果有四堆两两一样,还是先手必败,第一个人无论如何取,第二个人可以再次取成两两一样.如果有2*k堆两两一样,还是先手必败.注意:除了上述情况,都是先手必胜.因为…
题目链接题意:给定一个有向无环图(DAG),上面放有一些旗子,旗子可以重合,两个人轮流操作,每次可以把一个旗子从一个位置移动到相邻的位置,无法移动时输,询问先手是否必胜. 这道题可以把每个旗子看作单独的一个游戏,那么所有这些旗子的状态SG值,就是这些旗子各自SG值的Xor和,可以记忆化搜索dfs,暴力算SG值判断即可. #include<iostream> #include<cstdio> #include<algorithm> #include<cstring&…
题目链接题意:有n个硬币排成一圈,两个人轮流操作,每次可以取走一个或者相邻的连个硬币(只算最开始相邻的,取之后才相邻的不算),问先手必胜还是必败. 这个题可以证明若n>=3,则先手必败.对称博弈若n>=3,先手第一次必然把这个环拆成一个链,然后无论这条链长度的奇偶,后手总是可以把这条链分成两条相等的链,于是先手在一条链上做什么,后手就可以做什么.知道先手无法操作,后手胜. #include<iostream> #include<cstdio> #include<a…
题目链接题意: 有一个数p=1,甲乙两人轮流操作,每次可以把p乘2~9中的一个数,给定一个n,当一个人操作后p>=n,那么这个人赢,问先手是否必胜. 必胜状态:存在一种走法走到一个必败状态. 必败状态:后继状态都为必胜状态. 我们可以知道>=n的数都为必败状态,可以转移到>=n的最小的数为n/9(上取整),所以 n/9~n-1都为必胜态,同理n/9/2(都为上取整)为最小的必须转移到n/9~n-1(必胜状态)的状态,所以n/9/2~n/9-1为必败态,于是就可以这样推到1,看一下1是必胜…
一.流量统计介绍 流量统计是指通过各种科学的方式,准确的纪录来访某一页面的访问者的流量信息,目前而言,必须具备可以统计. 1.简介 统计独立的访问者数量(独立用户.独立访客): 可以统计独立的IP地址数量: 可以统计页面被刷新的数量. 访客数量,即来了多少访客?他们是哪里人?IP多少? 访客来源,即访客来自哪些网站?百度?天涯?还是163邮箱? 软文营销效果:我贴的链接和软文的效果到底怎么样? 访客的站内移动路径(即站内行为):访客进入网站后,浏览了哪些网页? 关键词广告的效果跟踪:百度竞价广告…
原博客地址http://blog.chinaunix.net/uid/20656672.html弃用…
题目链接 noip级数论模版题了吧.让求三个东西: 给定y,z,p,计算`Y^Z Mod P` 的值. 给定y,z,p,计算满足`xy≡ Z ( mod P )`的最小非负整数. 给定y,z,p,计算满足`Y^x ≡ Z ( mod P)`的最小非负整数. 其中P均为素数.来分着处理. 1 `y^z%p` 快速幂.推荐一种又快又好写的写法. LL power_mod(LL a,LL b,LL p){ //get a^b%p LL ret=; while(b){ ) ret = ret * a %…