tensorflow 只恢复部分模型参数】的更多相关文章

import tensorflow as tf def model_1(): with tf.variable_scope("var_a"): a = tf.Variable(initial_value=[1, 2, 3], name="a") vars = [var for var in tf.trainable_variables() if var.name.startswith("var_a")] print(len(vars)) retu…
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢复.下面是 TensorFlow-Examples 项目中提供的保存和恢复代码. ''' Save and Restore a model using TensorFlow. This example is using the MNIST database of handwritten digits…
1.  模型参数的保存: import tensorflow as tfw=tf.Variable(0.0,name='graph_w')ww=tf.Variable(tf.random_normal(shape=(2,3),stddev=0.5),name='graph_ww')# double=tf.multiply(2.0,w)saver=tf.train.Saver({'weights_w':w,'weights_ww':ww}) # 此处模型文件关键字可以自己命名,如weights_w…
关于TensorFlow Object Detection API配置,可以参考之前的文章https://becominghuman.ai/tensorflow-object-detection-api-tutorial-training-and-evaluating-custom-object-detector-ed2594afcf73 在本文中,我将讨论如何更改预训练模型的配置.本文的目的是您可以根据您的应用程序配置TensorFlow/models,而API将不再是一个黑盒! 本文的概述:…
首先是模型参数和网络结构的保存 #coding:utf-8 import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets('MNIST_data',one_hot=True) #每个批次的大小 batch_size = 100 n_batch = mnist.train._num_examples // batch_size…
写在前面 我之前使用的LSTM计算单元是根据其前向传播的计算公式手动实现的,这两天想要和TensorFlow自带的tf.nn.rnn_cell.BasicLSTMCell()比较一下,看看哪个训练速度快一些.在使用tf.nn.rnn_cell.BasicLSTMCell()进行建模的时候,遇到了模型保存.加载的问题. 查找了一些博主的经验,再加上自己摸索,在这里做个笔记,总结经验.其中关键要素有以下3点: 1.需要保存哪些变量(tensor),就要给哪些变量取名字(即name='XXXXX').…
本文地址:https://www.cnblogs.com/tujia/p/13862360.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
对于常见的工程应用来说,计算的工况很多,尤其优化工作,少则几百,多则上千,面对如此之多的case文件要写,假如按照一个一个的读写的话,相信你一定会为这么机械的工作烦躁,甚至影响今后好几天的心情,那么有什么简便一些的方法呢?答案是肯定的.那就是采用fluent的journal文件.首先打开fluent软件,在file/write/start journal,见下图: 选择保存文件名*.journal后(看你自己怎么设置文件名),我一般按照这一组的类型来命名:这样, journal文件就开始记录你以…
在Mysqldump官方工具中,如何只恢复某个库呢? 全库备份 [root@HE1 ~]#mysqldump -uroot -p --single-transaction -A --master-data=2 >dump.sql 只还原erp库的内容 [root@HE1 ~]# mysql-uroot -pMANAGER erp --one-database <dump.sql 可以看出这里主要用到的参数是--one-database简写-o的参数,极大方便了我们的恢复灵活性. 那么如何从全库…
首先定义一个tf.train.Saver类: saver = tf.train.Saver(max_to_keep=1) 其中,max_to_keep参数设定只保存最后一个参数,默认值是5,即保存最后5个模型,如果设置成0,训练过程中的所有模型都会被保存. 模型训练好以后,保存模型: saver.save(sess, ckpt_dir + "/nn_model.ckpt", global_step=1) 其中,sess是Session,ckpt_dir + "/nn_mode…
我们将深入讲解模型参数的访问和初始化,以及如何在多个层之间共享同一份参数. 之前我们一直在使用默认的初始函数,net.initialize(). from mxnet import init, nd from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() x = nd.random.unifor…
MXNet中含有init包,它包含了多种模型初始化方法. from mxnet import init, nd from mxnet.gluon import nn net = nn.Sequential() net.add(nn.Dense(256, activation='relu')) net.add(nn.Dense(10)) net.initialize() x = nd.random.uniform(shape=(2,20)) y = net(x) 一.访问模型参数 我们知道可以通过…
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: utf-8 -*- from captcha.image import ImageCaptcha # pip install captcha import numpy as np from PIL import Image import random import cv2 import os # 验…
假设我们只保存了模型的参数(model.state_dict())到文件名为modelparameters.pth, model = Net() 1. cpu -> cpu或者gpu -> gpu: checkpoint = torch.load('modelparameters.pth') model.load_state_dict(checkpoint) 2. cpu -> gpu 1 torch.load('modelparameters.pth', map_location=la…
写在前面 今天刚刚开通博客,主要想法跟之前某位博主说的一样,希望通过博客园把每天努力的点滴记录下来,也算一种坚持的动力.我是小白一枚,有啥问题欢迎各位大神指教,鞠躬~~ 换了新工作,目前手头是OCR项目,以前从事过图像处理,但是深度学习的知识几乎为0,这次通过这个项目希望自己能够入门,今天记录一下有关tensorflow加载不同模型的问题.我算是从0开始,直接阅读git上面的开源代码,很多明明很简单的问题也会困扰很久,但是解决之后肯定恍然大悟,归咎还是基础问题,然后去翻书翻博客.....OCR项…
[深度学习] Pytorch(三)-- 多/单GPU.CPU,训练保存.加载预测模型问题 上一篇实践学习中,遇到了在多/单个GPU.GPU与CPU的不同环境下训练保存.加载使用使用模型的问题,如果保存.加载的上述三类环境不同,加载时会出错.就去研究了一下,做了实验,得出以下结论: 多/单GPU训练保存模型参数.CPU加载使用模型 #保存 PATH = 'cifar_net.pth' torch.save(net.module.state_dict(), PATH) #加载 net = Net()…
本文地址:https://www.cnblogs.com/tujia/p/13862365.html 系列文章: [0]TensorFlow光速入门-序 [1]TensorFlow光速入门-tensorflow开发基本流程 [2]TensorFlow光速入门-数据预处理(得到数据集) [3]TensorFlow光速入门-训练及评估 [4]TensorFlow光速入门-保存模型及加载模型并使用 [5]TensorFlow光速入门-图片分类完整代码 [6]TensorFlow光速入门-python模…
LTE用户文档 (如有不当的地方,欢迎指正!) 1.背景 假定读者已经熟悉 ns-3 simulator ,能运行一般的仿真程序.如果不是的话,强烈推荐读者参考 [ns3tutorial].   2. 使用概述 ns-3 LTE 模块是一个软件库,允许仿真LTE网络,一些情况下还可以仿真核心网 Evolved Packet Core (EPC).仿真过程通常涉及以下几个步骤: 定义仿真场景. 编写程序,重建期望的仿真场景拓扑/架构,通过使用 ns3::LteHelper API(定义在 src/…
卷积神经网络:下面要说的这个网络,由下面三层所组成 卷积网络:卷积层 + 激活层relu+ 池化层max_pool组成 神经网络:线性变化 + 激活层relu 神经网络: 线性变化(获得得分值) 代码说明: 代码主要有三部分组成 第一部分: 数据读入 第二部分:模型的构建,用于生成loss和梯度值 第三部分:将数据和模型输入,使用batch_size数据进行模型参数的训练 第一部分:数据读入 第一步:输入文件的地址 第二步: 创建列表,用于文件数据的保存 第三步:使用pickle.load进行数…
  TensorFlow Saver 保存最佳模型 tf.train.Saver Save Best Model Checkmate is designed to be a simple drop-in solution for a very common Tensorflow use-case: keeping track of the best model checkpoints during training. The BestCheckpointSaver is a wrapper ar…
当然这个模型参数,最好用自己的,否则不够精确,我自己的还没训练完. from matplotlib import pyplot as plt import gluoncv from gluoncv import model_zool_zoo,data,utils net = model_zoo.get_model('faster_rcnn_resnet50_v1b_voc',pretrained = True) x, orig_img = data.transforms.presets.rcnn…
欢迎转载,转载请注明:本文出自Bin的专栏blog.csdn.net/xbinworld. 技术交流QQ群:433250724,欢迎对算法.技术感兴趣的同学加入. 继续前面关于深度学习CNN经典模型的整理,之前介绍了CNN网络Lenet,Alexnet,Googlenet,VGG,Deep Residual Learning(点击查看)的网络结构. 本文讲一下最新由UC Berkeley和Stanford研究人员一起完成的SqueezeNet[1]网络结构和设计思想.SqueezeNet设计目标…
1.保存模型参数(gen-我自己的模型名字) torch.save(self.gen.state_dict(), os.path.join(self.gen_save_path, 'gen_%d.pth'%step)) 2.加载模型参数 self.gen.load_state_dict(torch.load(os.path.join(self.gen_save_path, 'gen_%d.pth'%step),map_location='cpu')) 3.打印查看模型参数 pthfile = r…
1.随机划分训练集和测试集 sklearn.model_selection.train_test_split 一般形式: train_test_split是交叉验证中常用的函数,功能是从样本中随机的按比例选取train data和testdata,形式为: X_train,X_test, y_train, y_test = cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0…
公号:码农充电站pro 主页:https://codeshellme.github.io 本篇文章来介绍随机森林(RandomForest)算法. 1,集成算法之 bagging 算法 在前边的文章<AdaBoost 算法-分析波士顿房价数据集>中,我们介绍过集成算法.集成算法中有一类算法叫做 bagging 算法. bagging 算法是将一个原始数据集随机抽样成 N 个新的数据集.然后将这 N 个新的数据集作用于同一个机器学习算法,从而得到 N 个模型,最终集成一个综合模型. 在对新的数据…
亿级流量电商系统JVM模型参数预估方案,在原来的基础上采用ParNew+CMS垃圾收集器 一.亿级流量分析及jvm参数设置 1. 需求分析 大促在即,拥有亿级流量的电商平台开发了一个订单系统,我们应该如何来预估其并发量?如何根据并发量来合理配置JVM参数呢? 假设,现在有一个场景,一个电商平台,比如京东,需要承担每天上亿的流量.现在开发了一个订单系统,那么这个订单系统每秒的并发量是多少呢?我们应该如何分配其内存空间呢?先来分析一下 每日亿级流量,平均一个用户点击量在20-30左右,通过这个计算出…
# View more python learning tutorial on my Youtube and Youku channel!!! # Youtube video tutorial: https://www.youtube.com/channel/UCdyjiB5H8Pu7aDTNVXTTpcg # Youku video tutorial: http://i.youku.com/pythontutorial """ Please note, this code…
这种问题是,对于每一个变量 variable 由于是基于protobuf存在这大小限制(2G),这个时候,我们需要将embedding拆开,拆分成N等分,来使得每一个 variable都在2G以下; # !/usr/bin/env/python # coding=utf-8 import tensorflow as tf import numpy as np input_ids = tf.placeholder(dtype=tf.int32, shape=[None,None]) num_sha…
GAN:通过 将 样本 特征 化 以后, 告诉 模型 哪些 样本 是 黑 哪些 是 白, 模型 通过 训练 后, 理解 了 黑白 样本 的 区别, 再输入 测试 样本 时, 模型 就可以 根据 以往 的 经验 判断 是 黑 还是 白. 与 这些 分类 的 算法 不同, GAN 的 基本 原理 是, 有两 个 相生相克 的 模型 Generator 和 Discriminator,Generator 随机 生成 样本, Discriminator 将 真实 样本 标记 为 Real, 将 Gene…
首先需要搞定tensorflow c++库,搜了一遍没有找到现成的包,于是下载tensorflow的源码开始编译: tensorflow的contrib中有一个makefile项目,极大的简化的接下来的工作: 按照tensorflow makefile的说明文档,开始做c++库的编译: 1. 下载依赖 在tensorflow的项目顶层运行: tensorflow/contrib/makefile/download_dependencies.sh 东西会下载到tensorflow/contrib/…