1. Lagrange 坐标 $$\beex \bea &\quad 0=\int_\Omega\cfrac{\p \rho}{\p t}+\cfrac{\p}{\p x}(\rho u)\rd x\rd t=\int_{\p\Omega} -\rho u\rd x+\rho \rd t\\ &\ra \exists\ m,\st \rd m=-\rho u\rd t+\rho \rd x. \eea \eeex$$ 取 $$\beex \bea t'&=t,\\ m&=\…
1.  粘性热传导反应流体力学方程组是拟线性对称双曲 - 抛物耦合组. 2.  理想反应流体力学方程组是一阶拟线性对称双曲组 (取 ${\bf u},p,S,Z$ 为未知函数). 3.  右端项具有间断性.…
1.  记号与假设 (1)  已燃气体的化学能为 $0$. (2)  单位质量的未燃气体的化学能为 $g_0>0$. 2.  对多方气体 (理想气体当 $T$ 不高时可近似认为), $$\bex p=(\gamma-1)e^\frac{S-S_0}{c_V}\rho^\gamma,\quad e=e^\frac{S-S_0}{c_V}\rho^{\gamma-1}\ra p=(\gamma-1)\rho e =(\gamma-1)\rho (E-Zg_0). \eex$$ 3.  对理想气体的多…
1.  粘性热传导反应流体力学方程组 $$\beex \bea \cfrac{\rd \rho}{\rd t}&+\rho \Div{\bf u}=0,\\ \cfrac{\rd Z}{\rd t}&=-\bar k(\rho,p,Z)Z,\\ \cfrac{\rd {\bf u}}{\rd t}&+\cfrac{1}{\rho}\n p =\cfrac{1}{\rho}\Div(2\mu{\bf S}) +\cfrac{1}{\rho}\n \sez{\sex{\mu'-\cfr…
1.  记号: $Z=Z(t,{\bf x})$ 表示未燃气体在微团中所占的百分比 ($Z=1$ 表示完全未燃烧; $Z=0$ 表示完全燃烧). 2.  物理化学 (1)  燃烧过程中, 通过化学反应释放能量; 而不仅仅需要考虑单位质量的内能 (分子的动能与势能), 也要考虑化学能 (原子在分子中的能量), 于是引进完全能 $$\bex E=e+g, \eex$$ 其中 $g$ 表示单位质量的化学能. (2)  流体的状态方程一般与 $Z$ 有关 ($Z$ 不同, 混合气体不同), 而 $$\b…
一维粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p\rho}{\p t}+\cfrac{\p }{\p x}(\rho u)&=0,\\ \cfrac{\p u}{\p t}+u\cfrac{\p u}{\p x} +\cfrac{1}{\rho}\cfrac{\p p}{\p x} -\cfrac{1}{\rho}\cfrac{\p }{\p x}\sez{\sex{\cfrac{4\mu}{3}+\mu'}\cfrac{\p u}{\p x}}&=F,\\…
1.  粘性热传导流体动力学方程组可化为 $$\beex \bea \cfrac{\p \rho}{\p t}&+({\bf u}\cdot\n)\rho=-\rho \Div{\bf u},\\ \cfrac{\p{\bf u}}{\p t}&-\cfrac{\mu}{\rho}\lap {\bf u} -\cfrac{\mu'+\cfrac{1}{3}\mu}{\rho}\n\Div{\bf u} =\cfrac{1}{\rho} \sez{ \rho {\bf F}-c^2\n\rh…
粘性热传导流体动力学方程组: $$\beex \bea \cfrac{\p \rho}{\p t}+\Div(\rho{\bf u})&=0,\\ \rho \cfrac{\rd {\bf u}}{\rd t} +\n p -\n\sez{ \sex{\mu'-\cfrac{2}{3}\mu}\Div{\bf u} } -2\Div(\mu {\bf S})&=\rho {\bf F},\\ \rho\cfrac{\rd e}{\rd t} +p\Div{\bf u} -\mu\sum_{…
1.  ${\bf P}=(p_{ij})$, 而 $$\bex p_{ij}=-p\delta_{ij}+\tau_{ij}, \eex$$ 其中 $\tau_{ij}$ 对应于摩擦切应力. 2.  由于内摩擦力只与相对运动有关, 而 $\tau_{ij}$ 与速度无关, 而只与速度梯度有关, 且为线性的 (实验已很好的证实): $$\bex \tau_{ij}=c_{ijkl}\cfrac{\p u_k}{\p x_l}. \eex$$ 由于 $(\tau_{ij})$ 和 $\sex{\c…
1.  在有粘性的情形, 外界流体对 $\Omega$ 的作用力, 不仅有表面上的压力 (正压力), 也有表面上的内摩擦力 (切应力). 2.  于 $M$ 处以 ${\bf n}$ 为法向的单位面积所受的面力 (${\bf n}$ 所指一侧的流体施加的) 为 $$\bex {\bf p}_n=\lim_{{\bf n}\perp \lap S\to 0}\cfrac{\lap {\bf p}}{\lap S}. \eex$$ 称为应力向量. 3.  记 $p_{ij}$ 为以 $x_j$ 为法…