利用python进行数据加载和存储】的更多相关文章

1.文本文件 (1)pd.read_csv加载分隔符为逗号的数据:pd.read_table从文件.URL.文件型对象中加载带分隔符的数据.默认为制表符.(加载为DataFrame结构) 参数names指定列名,index_col用作行索引的列名或列编号,header用作列名的行号. (2)利用DataFrame的to_csv方法,将数据写入到文件. (3)import csv利用csv.reader读取已打开的文件对象:csv.writer方法写入数据. 2.json数据 import jso…
Python之pandas数据加载.存储 0. 输入与输出大致可分为三类: 0.1 读取文本文件和其他更好效的磁盘存储格式 2.2 使用数据库中的数据 0.3 利用Web API操作网络资源 1. 读取文本文件和其他更好效的磁盘存储格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数. 1.1 pandas中的解析函数: read_csv 从文件.URL.文件型对象中加载带分隔符的数据.默认分隔符为逗号 read_table 从文件.URL.文件型对象中加载带分隔符的数…
前面介绍了numpy和pandas的数据计算功能.但是这些数据都是我们自己手动输入构造的.如果不能将数据自动导入到python中,那么这些计算也没有什么意义.这一章将介绍数据如何加载以及存储. 首先来看读写文本格式的数据 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数.如下表: csv文件是默认以,为分割符.可以通过命令行cat来读取文件内容. In [4]: cat /home/zhf/1.csv 1,2,3,4 5,6,7,8 9,10,11,12 同样的我们也可以…
http://www.cnblogs.com/batteryhp/p/5021858.html 输入输出一般分为下面几类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据.利用Web API操作网络资源. 1.读写文本格式的数据 自己感觉读写文件有时候"需要运气",经常需要手工调整.因为其简单的文件交互语法.直观的数据结构,以及诸如元组打包解包之类的便利功能,Python在文本和文件处理方面已经成为一门招人喜欢的语言.pandas提供了一些用于将表格型数据读取为DataFra…
6.2 二进制数据格式 实现数据的高效二进制格式存储最简单的办法之一,是使用Python内置的pickle序列化. pandas对象都有一个用于将数据以pickle格式保存到磁盘上的to_pickle方法: 通过pickle直接读取被pickle化的数据,或使用更为方便的pandas.read_pickle: Ps:pickle仅建议用于短期存储格式.因其很难保证该格式是永远稳定的. pandas内置支持两个二进制数据格式:HDF5和MessagePack.pandas或Numpy数据的其他存储…
申明:本系列文章是自己在学习<利用Python进行数据分析>这本书的过程中,为了方便后期自己巩固知识而整理. 1 pandas读取文件的解析函数 read_csv 读取带分隔符的数据,默认分隔符 逗号 read_table 读取带分隔符的数据,默认分隔符 “\t” read_fwf 读取定宽.列格式数据(无分隔符) read_clipboard 读取剪贴板中的数据(将网页转换为表格) 1.1 读取excel数据 import pandas as pd import numpy as np fi…
标签(空格分隔): Python 读入读出通常可以划分为几个大类:读取文本文件和其他更高效的磁盘存储格式,加载数据库中的数据,利用Web API操作网络资源. 读写文本格式的数据 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数,如下表所示: 函数 说明 read_csv 从文件.URL.文件型对象中加载带分隔符的数据.默认分隔符为, read_table 从文件.URL.文件型对象中加载带分隔符的数据,默认的分隔符为制表符"\t" read_fwf 读取定宽列…
写在前面的话: 实例中的所有数据都是在GitHub上下载的,打包下载即可. 地址是:http://github.com/pydata/pydata-book 还有一定要说明的: 我使用的是Python2.7,书中的代码有一些有错误,我使用自己的2.7版本调通. # coding: utf-8 from pandas import Series, DataFrame import pandas as pd import numpy as np df = pd.read_csv('D:\Source…
第1节 pandas 回顾 第2节 读写文本格式的数据 第3节 使用 HTML 和 Web API 第4节 使用数据库 第5节 合并数据集 第6节 重塑和轴向旋转 第7节 数据转换 第8节 字符串操作 第9节 绘图和可视化 pandas 回顾 一.实验简介 学习数据分析的课程,需要同学们掌握好 Python 的语言基础,和对 Numpy 与 Matplotlib 等基本库有一些了解.同学们可以参考学习实验楼的 Python 语言基础教程与 Python 科学计算的课程. pandas 是后面我们…
一:读取数据的函数 1.读取csv文件 import numpy as np import pandas as pd data = pd.read_csv("C:\\Users\\Administrator\\Desktop\\result.csv",encoding="utf-8") # 这里需要注意路径必须用\\斜杠,\斜杠显示语法错误. data # 结果 数据量共100多万条,中间的省略显示…