sklearn交叉验证-【老鱼学sklearn】】的更多相关文章

在前面的一篇博文中关于计算房价中我们也大致提到了标准化的概念,也就是比如对于影响房价的参数中有面积和户型,面积的取值范围可以很广,它可以从0-500平米,而户型一般也就1-5. 标准化就是要把这两种参数的取值范围处于一个相对接近的地位,这样在进行梯度下降的计算中能够比较稳定地朝下落方向走,而不至于某个参数一调整步子迈得太大,而另一个参数一调整步子却又太小,有点像一个人的两条腿长短差距很大,走路就会不稳. 另外,Normalization在机器学习中也有叫归一化的,归一化相当于标准化的具体表现,因…
在做机器学习时需要有数据进行训练,幸好sklearn提供了很多已经标注好的数据集供我们进行训练. 本节就来看看sklearn提供了哪些可供训练的数据集. 这些数据位于datasets中,网址为:http://scikit-learn.org/stable/modules/classes.html#module-sklearn.datasets 房价数据 加载波士顿房价数据,可以用于线性回归用: sklearn.datasets.load_boston:http://scikit-learn.or…
交叉验证(Cross validation),有时亦称循环估计, 是一种统计学上将数据样本切割成较小子集的实用方法.于是可以先在一个子集上做分析, 而其它子集则用来做后续对此分析的确认及验证. 一开始的子集被称为训练集.而其它的子集则被称为验证集或测试集.交叉验证是一种评估统计分析.机器学习算法对独立于训练数据的数据集的泛化能力(generalize). 我们以分类花的例子来看下: # 加载iris数据集 from sklearn.datasets import load_iris from s…
过拟合 过拟合相当于一个人只会读书,却不知如何利用知识进行变通. 相当于他把考试题目背得滚瓜烂熟,但一旦环境稍微有些变化,就死得很惨. 从图形上看,类似下图的最右图: 从数学公式上来看,这个曲线应该是阶数太高的函数,因为一般任意的曲线都能由高阶函数来拟合,它拟合得太好了,因此丧失了泛化的能力. 用Learning curve 检视过拟合 首先加载digits数据集,其包含的是手写体的数字,从0到9: # 加载数据 digits = load_digits() X = digits.data y…
在上一个博文中,我们用learning_curve函数来确定应该拥有多少的训练集能够达到效果,就像一个人进行学习时需要做多少题目就能拥有较好的考试成绩了. 本次我们来看下如何调整学习中的参数,类似一个人是在早上7点钟开始读书好还是晚上8点钟读书好. 加载数据 数据仍然利用手写数字识别作为训练数据: from sklearn.datasets import load_digits # 加载数据 digits = load_digits() X = digits.data y = digits.ta…
本节主要讲述模型中的各种属性及其含义. 例如上个博文中,我们有用线性回归模型来拟合房价. # 创建线性回归模型 model = LinearRegression() # 训练模型 model.fit(X_train, y_train) # 打印出预测的前5条房价数据 print("预测的前5条房价数据:") print(model.predict(X_test)[:5]) 在sklearn中使用各种模型时都用了一种统一的样式,基本上都是先用fit()进行训练,然后用predict()进…
训练好了一个Model 以后总需要保存和再次预测, 所以保存和读取我们的sklearn model也是同样重要的一步. 比如,我们根据房源样本数据训练了一下房价模型,当用户输入自己的房子后,我们就需要根据训练好的房价模型来预测用户房子的价格. 这样就需要在训练模型后把模型保存起来,在使用模型时把模型读取出来对输入的数据进行预测. 这里保存和读取模型有两种方法,都非常简单,差别在于保存和读取速度的快慢上,因为有一个是利用了多进程机制,下面我们分别来看一下. 创建模型 首先我们创建模型并训练数据:…
前面我们针对电影评论编写了二分类问题的解决方案. 这里对前面的这个方案进行一些改进. 分批训练 model.fit(x_train, y_train, epochs=20, batch_size=512) 这里在训练时增加了一个参数batch_size,使用 512 个样本组成的小批量,将模型训练 20 个轮次. 这个参数可以看成是在训练时不一次性在全部的训练集上进行,而是针对其中的512个题目分批次进行训练.有点类似做512道题目进行训练,然后看结果进行调整,而不是一次性做好25000道题目然…
前面我们曾有篇文章中提到过关于用tensorflow训练手写2828像素点的数字的识别,在那篇文章中我们把手写数字图像直接碾压成了一个784列的数据进行识别,但实际上,这个图像是2828长宽结构的,我们这次使用CNN卷积神经网络来进行识别. 卷积神经网络我的理解是部分模仿了人眼的功能. 我们在看一个图像时不是一个像素点一个像素点去分辨的,我们的眼睛天然地具有大局观,我们看到某个图像时自动地会把其中的细节部分给聚合起来进行识别,相反,如果我们用个放大镜看到其中的各个像素点时反而不知道这是啥东西了.…
前面一节咱们已经介绍了决策树的原理已经在sklearn中的应用.那么这里还有两个数据处理和sklearn应用中的小知识点咱们还没有讲,但是在实践中却会经常要用到的,那就是交叉验证cross_validation和Pipeline.cross_validation是保证了咱们的模型不受数据分布的影响,因为有些数据可能因为数据的分布很不平均,导致咱们训练的模型虽然在咱们的数据集里面的表现很好,但是在实际中却可能是不一样的情况,cross validation的作用是model checking,而不…
老鱼为了跟上时代潮流,也开始入门人工智能.机器学习了,瞬时觉得自己有点高大上了:). 从机器学习的实用系列出发,我们会以numpy => pandas => scikit-learn => tensorflow => keras 的学习系列过程,这也是老鱼设定的学习步骤,有兴趣的同学可以跟着老鱼的脚步一点一点往前走,共同进步! 这是我的第一篇关于numpy的学习,我会把我学习的过程记录在这里. 言归正传,学个人工智能和机器学习,为何要学什么numpy啊? 因为numpy是Pytho…
这次老鱼开始学习matplotlib了. 在上个pandas最后一篇博文中,我们已经看到了用matplotlib进行绘图的功能,这次更加系统性地学习一下关于matplotlib的功能. matlab由于其拥有强大的显示图表功能而出名: 在python中,就提供了一个类似matlab软件中的画图库matplotlib,其基本上是模仿matlab中的画图函数. 官网中介绍的显示图表的例子见:http://matplotlib.org/gallery/index.html 要使用,就必须先进行安装,安…
StratifiedKFold用法类似Kfold,但是他是分层采样,确保训练集,测试集中各类别样本的比例与原始数据集中相同. 例子: import numpy as np from sklearn.model_selection import KFold,StratifiedKFold--------------------- 作者:wqh_jingsong 来源:CSDN 原文:https://blog.csdn.net/wqh_jingsong/article/details/7789644…
在机器学习中可能会存在过拟合的问题,表现为在训练集上表现很好,但在测试集中表现不如训练集中的那么好. 图中黑色曲线是正常模型,绿色曲线就是overfitting模型.尽管绿色曲线很精确的区分了所有的训练数据,但是并没有描述数据的整体特征,对新测试数据的适应性较差. 一般用于解决过拟合的方法有增加权重的惩罚机制,比如L2正规化,但在本处我们使用tensorflow提供的dropout方法,在训练的时候, 我们随机忽略掉一些神经元和神经联结 , 使这个神经网络变得"不完整". 用一个不完整…
为何要用keras? 两个字:简单. Keras让深度学习像搭建积木一样方便地来进行,使前面的tensorflow能够更加方便地使用. 虽然还有其它更多的理由,比如:Keras 支持多个后端引擎,不会将你锁定到一个生态系统中. 但是对于我来讲,最大的优点就是简单方便. 安装keras pip3 install keras 验证keras是否安装成功? 在命令行中进行操作: 这里同时就显示了后台引擎为tensorflow. 如果没有安装过tensorflow,则可以直接在命令行中输入如下命令进行安…
前面我们学习过回归问题,比如对于房价的预测,因为其预测值是个连续的值,因此属于回归问题. 但还有一类问题属于分类的问题,比如我们根据一张图片来辨别它是一只猫还是一只狗.某篇文章的内容是属于体育新闻还是经济新闻等,这个结果是有一个全集的离散值,这类问题就是分类问题. 我有时会把回归问题看成是分类问题,比如对于房价值的预测,在实际的应用中,一般不需要把房价精确到元为单位的,比如对于均价,以上海房价为例,可以分为:5000-10万这样的一个范围段,并且以1000为单位就可以了,尽管这样分出了很多类,但…
目的 本节我们将介绍如何搭建python的开发环境以及numpy的基本属性,这样可以检验我们的numpy是否安装正确了. python开发环境的搭建 工欲善其事必先利其器,我用得比较顺手的是IntelliJ IDEA的开发环境,这次我也用IDEA的python开发环境来进行开发. 我使用IntelliJ IDEA添加python插件方式进行开发,主要原因是因为我还用它来开发JAVA,因此只要在其中下载python插件就可以. 具体安装插件方式就不细讲了,只放一张截图,大家应该看得明白. 有的同学…
概述 本节主要讲解numpy数组的加减乘除四则运算. np.array()返回的是numpy的数组,官方称为:ndarray,也就是N维数组对象(矩阵),N-dimensional array object. 这个对象的特性跟矩阵的特性也比较接近,因此我这里有时就将其混称为数组/矩阵了. 数组加法 例如: import numpy as np a = np.array([10, 20, 30, 40]) print("a:", a) b = np.arange(4) print(&qu…
TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着N维数组,Flow(流)意味着基于数据流图的计算,TensorFlow为张量从流图的一端流动到另一端计算过程.TensorFlow是将复杂的数据结构传输至人工智能神经网中进行分析和处理过程的系统. 安装 在windows中我们以最简单的方式进行安装. C:\> pip3 install --upgrade tensorflow 如果你机器有GPU的话,可以用如…
什么是二分类问题? 二分类问题就是最终的结果只有好或坏这样的一个输出. 比如,这是好的,那是坏的.这个就是二分类的问题. 我们以一个电影评论作为例子来进行.我们对某部电影评论的文字内容为好评和差评. 我们使用IMDB 数据集,它包含来自互联网电影数据库(IMDB)的 50 000 条严重两极分化的评论.数据集被分为用于训练的 25 000 条评论与用于测试的 25 000 条评论,训练集和测试集都包含 50% 的正面评论和 50% 的负面评论. 加载数据集 import tensorflow.k…
前面我们学习了numpy,现在我们来学习一下pandas. Python Data Analysis Library 或 pandas 主要用于处理类似excel一样的数据格式,其中有表头.数据序列号以及实际的数据,而numpy就仅仅包含了实际的数据. 安装 直接输入: pip3 install pandas 最基本用法 import pandas as pd s = pd.Series([1, 2, 5, 6]) print(s) 输出: 0 1 1 2 2 5 3 6 dtype: int6…
选择列 根据列名来选择某列的数据 import pandas as pd import numpy as np dates = pd.date_range("2017-01-08", periods=6) data = pd.DataFrame(np.arange(24).reshape(6, 4), index=dates, columns=["A", "B", "C", "D"]) print(&quo…
之前我们学习过用CNN(卷积神经网络)来识别手写字,在CNN中是把图片看成了二维矩阵,然后在二维矩阵中堆叠高度值来进行识别. 而在RNN中增添了时间的维度,因为我们会发现有些图片或者语言或语音等会在时间轴上慢慢展开,有点类似我们大脑认识事物时会有相关的短期记忆. 这次我们使用RNN来识别手写数字. 首先导入数据并定义各种RNN的参数: import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_dat…
当我们对模型进行了训练后,就需要把模型保存起来,便于在预测时直接用已经训练好的模型进行预测. 保存模型的权重和偏置值 假设我们已经训练好了模型,其中有关于weights和biases的值,例如: import tensorflow as tf # 保存到文件 W = tf.Variable([[1, 2, 3], [3, 4, 5]], dtype=tf.float32, name='weights') b = tf.Variable([[1, 2, 3]], dtype=tf.float32,…
前面我们用Tensorboard显示了tensorflow的程序结构,本节主要用Tensorboard显示各个参数值的变化以及损失函数的值的变化. 这里的核心函数有: histogram 例如: tf.summary.histogram(layer_name + "/weights", Weights) 这里用tf.summary.histogram函数来显示二维数据在不同网络层的变化情况,其中第一个参数是名字,可以用/来进行分层显示,第二个参数就是相应变量的值. scalar tf.…
tensorflow自带了可视化的工具:Tensorboard.有了这个可视化工具,可以让我们在调整各项参数时有了可视化的依据. 本次我们先用Tensorboard来可视化Tensorflow的结构. 在输出tensorflow结构的关键步骤是: writer = tf.summary.FileWriter("E:/todel/data/tensorflow", sess.graph) 这个函数中把当前的tensorflow的结构图输出到指定的目录下. 而为了能够使输出的结构能够有一定…
tensorflow中的优化器主要是各种求解方程的方法,我们知道求解非线性方程有各种方法,比如二分法.牛顿法.割线法等,类似的,tensorflow中的优化器也只是在求解方程时的各种方法. 比较常用的是:·tf.train.GradientDescentOptimizer()·梯度下降优化器,之前我们一直在使用. 又比如:tf.train.MomentumOptimizer,它会有短时记忆的优化功能. 更多的关于优化器的文档参考(需FQ):https://www.tensorflow.org/a…
要玩numpy,就得要安装numpy. 安装python 3.6.3 64位 首先需要安装python,安装python的具体方法这里就不细讲了. 可以到官网上下载相应的python版本就可以了,目前我这里安装的是最新版python 3.6.3,64位的.这里需要注意的是python多少位的,好像后面在安装其它模块时就需要注意对应的位数. 如何查看自己电脑是多少位数的? 只要右键我的电脑显示其属性就可以,其中会有信息告诉你的操作系统是32位还是64位.现在的电脑一般都是64位操作系统的. 当然,…
在上一篇文章中,我们已经看到了如何通过numpy创建numpy中的数组,这里再重复一下: import numpy as np # 数组 a = [[1, 2, 3], [4, 5, 6]] print("a:", a) # 矩阵 b = np.array(a) print("b:", b) 执行后输出为: a: [[1, 2, 3], [4, 5, 6]] b: [[1 2 3] [4 5 6]] 我们可以看到python中的数组和numpy中的数组在屏幕上输出的…
numpy的基础运算中还有很多运算,我们这里再记录一些. 最小/大值索引 前面一篇博文中我们讲述过如何获得数组中的最小值,这里我们获得最小/大值的索引值,也就是这个最小/大值在整个数组中位于第几位. import numpy as np a = np.array([[10, 30, 15], [20, 5, 25]]) print("a=") print(a) print("最小值索引:", a.argmin()) print("最大值索引:",…