seq2seq】的更多相关文章

两周以前读了些文档自动摘要的论文,并针对其中两篇( [2] 和 [3] )做了presentation.下面把相关内容简单整理一下. 文本自动摘要(Automatic Text Summarization)就是说在不改变文档原意的情况下,利用计算机程序自动地总结出文档的主要内容.自动摘要的应用场景非常多,例如新闻标题生成.科技文献摘要生成.搜索结果片段(snippets)生成.商品评论摘要等.在信息爆炸的互联网大数据时代,如果能用简短的文本来表达信息的主要内涵,无疑将有利于缓解信息过载问题. 一…
RNN,LSTM,seq2seq等模型广泛用于自然语言处理以及回归预测,本期详解seq2seq模型以及attention机制的原理以及在回归预测方向的运用. 1. seq2seq模型介绍 seq2seq模型是以编码(Encode)和解码(Decode)为代表的架构方式,seq2seq模型是根据输入序列X来生成输出序列Y,在翻译,文本自动摘要和机器人自动问答以及一些回归预测任务上有着广泛的运用.以encode和decode为代表的seq2seq模型,encode意思是将输入序列转化成一个固定长度的…
深度学习之 seq2seq 进行 英文到法文的翻译 import os import torch import random source_path = "data/small_vocab_en" target_path = "data/small_vocab_fr" MAX_LENGTH = 100 SOS_token = 0 EOS_token = 1 def load_data(path): input_file = os.path.join(path) wi…
ChatGirl 一个基于 TensorFlow Seq2Seq 模型的聊天机器人[中文文档] 简介 简单地说就是该有的都有了,但是总体跑起来效果还不好. 还在开发中,它工作的效果还不好.但是你可以直接训练,并且运行. 包含预处理过的 twitter 英文数据集,训练,运行,工具代码,可以运行但是效果有待提高. 数据集 Twitter 数据集: https://github.com/suriyadeepan/datasets 训练 你需要新建一个 model 文件夹来保存训练完的模型 运行这个文…
Introduction [Under developing,it is not working well yet.But you can just train,and run it.] ChatGirl is an AI ChatBot based on TensorFlow Seq2Seq Model. TensorFlowNews TensorFlow CNN Model Project:https://github.com/fendouai/FaceRank TensorFlow LST…
#!/usr/bin/env python # -*- coding: utf-8 -*- import tensorflow as tf import numpy as np params=np.random.normal(loc=0.0,scale=1.0,size=[10,10]) encoder_inputs=tf.placeholder(dtype=tf.int32,shape=[10,10]) decoder_inputs=tf.placeholder(dtype=tf.int32,…
这篇文章整理有关注意力机制(Attention Mechanism )的知识,主要涉及以下几点内容: 1.注意力机制是为了解决什么问题而提出来的? 2.软性注意力机制的数学原理: 3.软性注意力机制.Encoder-Decoder框架与Seq2Seq 4.自注意力模型的原理. 一.注意力机制可以解决什么问题? 神经网络中的注意力机制(Attention Mechanism)是在计算能力有限的情况下,将计算资源分配给更重要的任务,同时解决信息超载问题的一种资源分配方案.在神经网络学习中,一般而言模…
前言 本系列教程为pytorch官网文档翻译.本文对应官网地址:https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html 系列教程总目录传送门:我是一个传送门 本系列教程对应的 jupyter notebook 可以在我的Github仓库下载: 下载地址:https://github.com/Holy-Shine/Pytorch-notebook 本教程我们将会搭建一个网络来将法语翻译成英语. [KE…
seq2seq: seq2seq就是将输入序列经过encoder-decoder变成目标序列. 如图所示,输入序列是 [A, B, C, <EOS>],输出序列是  [W, X, Y, Z, <EOS>] encoder-decoder: 主要过程就是用RNN对输入序列进行编码,然后再用RNN对上下文向量进行解码. 实现方式: 1.tf.nn.dynamic_rnn     参考:https://github.com/ematvey/tensorflow-seq2seq-tutor…
from : https://caicai.science/2018/10/06/attention%E6%80%BB%E8%A7%88/ 一.Seq2Seq 模型 1. 简介 Sequence-to-sequence (seq2seq) 模型,顾名思义,其输入是一个序列,输出也是一个序列,例如输入是英文句子,输出则是翻译的中文.seq2seq 可以用在很多方面:机器翻译.QA 系统.文档摘要生成.Image Captioning (图片描述生成器). 2. 基本框架 第一种结构 [参考1]论文…