什么是卷积convolution】的更多相关文章

啰嗦开场白 读本科期间,信号与系统里面经常讲到卷积(convolution),自动控制原理里面也会经常有提到卷积.硕士期间又学了线性系统理论与数字信号处理,里面也是各种大把大把卷积的概念.至于最近大火的深度学习,更有专门的卷积神经网络(Convolutional Neural Network, CNN),在图像领域取得了非常好的实际效果,已经把传统的图像处理的方法快干趴下了.啰啰嗦嗦说了这么多卷积,惭愧的是,好像一直以来对卷积的物理意义并不是那么清晰.一是上学时候只是简单考试,没有仔细思考过具体…
转自:https://blog.csdn.net/dkcgx/article/details/46652021 转自:https://blog.csdn.net/Reborn_Lee/article/details/83279843 conv(向量卷积运算) 所谓两个向量卷积,说白了就是多项式乘法. 比如:p=[1 2 3],q=[1 1]是两个向量,p和q的卷积如下: 把p的元素作为一个多项式的系数,多项式按升幂(或降幂)排列,比如就按升幂吧,写出对应的多项式:1+2x+3x^2;同样的,把q…
定义 卷积是两个变量在某范围内相乘后求和的结果.如果卷积的变量是序列x(n)和h(n),则卷积的结果 , 其中星号*表示卷积. 当时序n=0时,序列h(-i)是h(i)的时序i取反的结果:时序取反使得h(i)以纵轴为中心翻转180度,所以这种相乘后求和的计算法称为卷积和,简称卷积. 另外,n是使h(-i)位移的量,不同的n对应不同的卷积结果.   如果卷积的变量是函数x(t)和h(t),则上述卷积(和)的计算变为积分: , 其中p是积分变量,积分也是求和,t是使函数h(-p)位移的量,星号*表示…
一.向量的卷积运算 给定两个n维向量α=(a0, a1, ..., an-1)T,β=(b0, b1, ..., bn-1)T,则α与β的卷积运算定义为: α*β=(c0, c1, ..., c2n-2)T,其中 事实上,“卷积”的含义从矩阵αβT的表示即可以看出:不难发现,ck即为第k列副对角线元素之和.形象地讲,对α与β作卷积,就像是将由α与β的元素形成的下述矩阵“面”沿副对角线方向卷了起来得到的“一束”向量. 卷积的蛮力算法的时间复杂度为O(n2).为提高算法效率,可以采用分治策略,这将在…
参考文章 https://www.jianshu.com/p/daaaeb718aed https://blog.csdn.net/bitcarmanlee/article/details/54729807  https://www.zhihu.com/question/22298352 ----这个是重点   numpy中的一维的卷积     np.convolve([1,2,3,4],[1,1,3],'full')                                       …
这东西大学学过,然后我忘记了,后来就只记得这个名字了. https://zh.wikipedia.org/wiki/%E5%8D%B7%E7%A7%AF http://www.guokr.com/post/342476/ 我不理解为什么是g(x-r) 为什么是-r 为什么要- 这是对y轴翻转 x r都是时间...这也是我后来才意识到的 加权叠加  https://www.zhihu.com/question/22298352 复利那个例子解释了 为什么反转 后发出的信号 对此点的累积少了了…
本文属于图神经网络的系列文章,文章目录如下: 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (一) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (二) 从图(Graph)到图卷积(Graph Convolution):漫谈图神经网络模型 (三) 在上一篇博客中,我们简单介绍了基于循环图神经网络的两种重要模型,在本篇中,我们将着大量笔墨介绍图卷积神经网络中的卷积操作.接下来,我们将首先介绍一下图卷积神经网络的大概框架…
http://m.blog.csdn.net/blog/wu010555688/24487301 本文整理了网上几位大牛的博客,详细地讲解了CNN的基础结构与核心思想,欢迎交流. [1]Deep learning简介 [2]Deep Learning训练过程 [3]Deep Learning模型之:CNN卷积神经网络推导和实现 [4]Deep Learning模型之:CNN的反向求导及练习 [5]Deep Learning模型之:CNN卷积神经网络(一)深度解析CNN [6]Deep Learn…
图像卷积.相关以及在MATLAB中的操作 2016年7月11日 20:34:35, By ChrisZZ 区分卷积和相关 图像处理中常常需要用一个滤波器做空间滤波操作.空间滤波操作有时候也被叫做卷积滤波,或者干脆叫卷积(离散的卷积,不是微积分里连续的卷积):滤波器也有很多名字:卷积模版.卷积核.掩模.窗口等. 空间滤波可以分为线性滤波和非线性滤波.非线性滤波常见的有中值滤波.最大值滤波等,相当于自定义一个函数,在数学上由于不满足线性变换因此叫做非线性滤波.这里不细研究它. 线性滤波则通常是:将模…
彻底理解数字图像处理中的卷积-以Sobel算子为例 作者:FreeBlues 修订记录 2016.08.04 初稿完成 概述 卷积在信号处理领域有极其广泛的应用, 也有严格的物理和数学定义. 本文只讨论卷积在数字图像处理中的应用. 在数字图像处理中, 有一种基本的处理方法:线性滤波. 待处理的平面数字图像可被看做一个大矩阵, 图像的每个像素对应着矩阵的每个元素, 假设我们平面的分辨率是 1024*768, 那么对应的大矩阵的行数= 1024, 列数=768. 用于滤波的是一个滤波器小矩阵(也叫卷…