pgm转jpg】的更多相关文章

ZeroMQ API 目录 :http://www.cnblogs.com/fengbohello/p/4230135.html ————————————————————————————————————— ZeroMQ 官方地址:http://api.zeromq.org/4-0:zmq-pgm zmq_pgm(7)         ØMQ Manual - ØMQ/3.2.5 Name zmq_pgm – ØMQ 使用PGM 进行可靠的多路传输 Synopsis PGM(实际通用多路广播)是一…
最近在搞人脸识别,下载数据集走得比较心累.很多数据集太大了.没有啥标签.先搞一个小的玩玩.还找到的是pgm灰度图.索性写了个小脚本,用来转换.同时写脚本打标签. 数据集地址:http://download.csdn.net/detail/u014609362/7804183#comment 代码附上. from PIL import Imageimport osimport shutilimport retextfile=''filex=open(textfile,'w+')def main()…
前言: 本次实验是用EM来学习HMM中的参数,并用学好了的HMM对一些kinect数据进行动作分类.实验内容请参考coursera课程:Probabilistic Graphical Models 中的的最后一个assignmnet.实验用的是kinect关节点数据,由于HMM是一个时序模型,且含有隐变量,所以这个实验不是很好做.大家对HMM不熟悉的话可以参考网友的实验:code. kinect人体关节数据中, 每个关节点由3个坐标数据构成,多个关节点数据(实验中为10个)构成一个pose,多个…
前言: 本次实验包含了2部分:贝叶斯模型参数的学习以及贝叶斯模型结构的学习,在前面的博文PGM练习七:CRF中参数的学习 中我们已经知道怎样学习马尔科夫模型(CRF)的参数,那个实验采用的是优化方法,而这里贝叶斯模型参数的学习是先假定样本符合某种分布,然后使用统计的方法去学习这些分布的参数,来达到学习模型参数的目的.实验内容请参考coursera课程:Probabilistic Graphical Models中的assignmnet 8,实验code可参考网友的:code 实验中所用到的bod…
前言: 本次实验主要任务是学习CRF模型的参数,实验例子和PGM练习3中的一样,用CRF模型来预测多张图片所组成的单词,我们知道在graph model的推理中,使用较多的是factor,而在graph model参数的学习中,则使用较多的是指数线性模型,本实验的CRF使用的是log-linear模型,实验内容请参考 coursera课程:Probabilistic Graphical Models中的assignmnet 7. 实验code可参考网友的:code实验对应的模型示意图如下: CR…
前言: 本次实验是将一些简单的决策理论和PGM推理结合,实验内容相对前面的图模型推理要简单些.决策理论采用的是influence diagrams,和常见图模型本质一样, 其中的决策节点也可以用CPD来描述,做决策时一般是采用最大期望效用准则(MEU).实验内容参考参考的内容是coursera课程:Probabilistic Graphical Models中的assignment 5. 实验code可参考网友的:code. 实验中一些函数简单说明: Fnew = VariableElimina…
前言: 这次练习完成的是图模型的近似推理,参考的内容是coursera课程:Probabilistic Graphical Models . 上次实验PGM练习四:图模型的精确推理 中介绍的是图模型的精确推理,但在大多数graph上,其精确推理是NP-hard的,所以有必要采用计算上可行的近似推理.本实验中的近似推理分为2个部分,LBP(loop belief propagation算法)和MCMC采样.实验code可参考:实验code可参考网友的:code. 算法流程: LBP(loop be…
前言: 这次实验完成的是图模型的精确推理.exact inference分为2种,求边缘概率和求MAP,分别对应sum-product和max-sum算法.这次实验涉及到的知识点很多,不仅需要熟悉图模型的representation,而且还需明白图模型的inference理论,大家可参考coursera课程:Probabilistic Graphical Models的课件和视频.多花点功夫去理解每行代码,无形之中会收获不少.新年第一篇博客,继续加油! 算法流程: Sum-product求条件概…
在本文中,基于Daphne Koller完成课程. PDM(ProbabilisticGraphiccal Models) 称为概率图模型. 以下分别说明3个词相应的意义. 概率 -给出了不确定性的明白量度. -给出了依据不确定性进行判断的有力工具. -利用数据结构,建立了进行学习的方法,解决十分大规模的问题. 图 这里主要用到2种概率图,用于表示依赖关系.如图1所看到的. 图1 1.Bayesiannetworks 贝叶斯网络是一个有向无环图(Directed Acyclic Graph,DA…
目录[-] 本文大部分来自:http://www.zhujun.me/d-separation-separation-d.html 一.引言 二.三种情况分析 三.总结 四.应用例子 五.参考资料 其中找了一些资料发现原文中阻塞(block)中(b)部分有出路,黑体部分修改了一下,那么‘四应用例子’部分答案也跟着修改,如果理解有误希望能给予解释,谢谢!资料参考在最下部分‘六.补充参考资料例子’. 一.引言 在贝叶斯网络的学习过程中,经常会遇到(D-Separation)D-分离这个概念,D-分离…