当我们使用Caffe训练AlexNet网络时,会遇到精度一值在低精度(30%左右)升不上去,或者精度总是为0,如下图所示: 出现这种情况,可以尝试使用以下几个方法解决: 1.数据样本量是否太少,最起码要千张图片样本. 2.在制作训练样本标签时,是否打乱样本顺序,这样在训练时每取batch_size个样本就可以训练多个类别,以防止时出现常出现0精度或1精度的情况. 3.文件solver.prototxt和文件train_val.prototxt的配置问题,一般调节solver文件中的学习率base…
训练AlexNet网络时,出现Check failed:datum_height >= crop_size (size vs. 227)错误,具体如下图所示: 根据提示,问题是crop_size的尺寸不匹配,AlexNet网络默认crop_size的尺寸是227*227,而我进行归一化时将每幅图像归一化成了32*32,所以这里出现问题. 在train_val.prototxt文件中将其改为32*32后,上图问题解决,如下图所示: 但紧接着出现下面的问题,如下图所示: 这个问题是由于归一化后的尺寸…
caffe 进行自己的imageNet训练分类:loss一直是87.3365,accuracy一直是0 解决方法: http://blog.csdn.net/jkfdqjjy/article/details/52268565?locationNum=14 知道了原因,解决时就能对症下药.总体上看,softmax输入的feature由两部分计算得到:一部分是输入数据,另部分是各层权重参数. 1.观察数据中是否有异常样本或异常label导致数据读取异常2.调小初始化权重,以便使softmax输入的f…
数据集 1.准备数据集 1)下载训练和验证图片 ImageNet官网地址:http://www.image-net.org/signup.php?next=download-images (需用邮箱注册,而且邮箱不能是地址以.com结尾的邮箱) ImageNet官网下载ILSVRC2012的训练数据集和验证数据集.除数据集外,ImageNet还提供了一个开发工具包ILSVRC2012_devkit_t12.tar.gz,是对ILSVRC2012数据集的详细讲解,提交比赛结果的要求,和对结果评价的…
训练时,出现Check failed:error == cudaSuccess (2 vs. 0) out of memory,并且accruary = 0,如下图所示: 解决方法:将train_val.prototxt文件中的batch_size变小一点,如下图所示: 也可参见博客: http://blog.csdn.net/u013066730/article/details/53784614…
上一节内容已经详细介绍了AlexNet的网络结构.这节主要通过Tensorflow来实现AlexNet. 这里做测试我们使用的是CIFAR-10数据集介绍数据集,关于该数据集的具体信息可以通过以下链接查看: https://blog.csdn.net/davincil/article/details/78793067 下面粗略的介绍一下CIFAR-10数据集. 一 CIFAR-10数据集 CIFAR-10数据集由10类32x32的彩色图片组成,一共包含60000张图片,每一类包含6000图片.其…
1.在开始之前,先简单回顾一下几个概念. Caffe(Convolution Architecture For Feature Extraction-卷积神经网络框架):是一个清晰,可读性高,快速的深度学习框架. CUDA(Compute Unifined Device Architecture-计算统一设备框架):是显卡厂商NVIDIA推出的运算平台. CUDA是一种由NVIDIA推出的通用并行计算架构,该架构使GPU能够解决复杂的计算问题. CuDNN( CUDA Deep Neural N…
现在一直都是用Caffe在跑别人写好的网络,如何运行自定义的网络和图片,是接下来要学习的一点. 1. 使用Caffe中自带的网络模型来运行自己的数据集 参考 [1] :http://www.cnblogs.com/denny402/p/5083300.html,下面几乎是全文转载,有部分对自己踩过的坑的补充,向原作者致敬! 一.准备数据 我去网上找了一些其它的图片来代替,共有500张图片,分为大巴车.恐龙.大象.鲜花和马五个类,每个类100张.需要的同学,可到我的网盘下载:http://pan.…
版权声明:本文为博主原创文章,未经博主允许不得转载. 1. 图片数据处理 2. 卷积神经网络 2.1. 卷积层 2.2. 池化层 2.3. 全链层 3. AlexNet 4. 用Tensorflow搭建完整的AlexNet 5. 用AlexNet识别猫狗图片 5.1. 定义分类 5.2. 训练网络 5.3. 验证 1. 图片数据处理 一张图片是由一个个像素组成,每个像素的颜色常常用RGB.HSB.CYMK.RGBA等颜色值来表示,每个颜色值的取值范围不一样,但都代表了一个像素点数据信息.对图片的…
一.深度学习中常用的调节参数 本节为笔者上课笔记(CDA深度学习实战课程第一期) 1.学习率 步长的选择:你走的距离长短,越短当然不会错过,但是耗时间.步长的选择比较麻烦.步长越小,越容易得到局部最优化(到了比较大的山谷,就出不去了),而大了会全局最优 一般来说,前1000步,很大,0.1:到了后面,迭代次数增高,下降0.01,再多,然后再小一些. 2.权重 梯度消失的情况,就是当数值接近于正向∞,求导之后就更小的,约等于0,偏导为0 梯度爆炸,数值无限大 对于梯度消失现象:激活函数 Sigmo…