[Machine-Learning] 熟悉 Matlab 中的 map】的更多相关文章

概述 map 的意思是映射,即将一个变量映射到另一个变量. 比如将一个字符串映射为一个数值,那个字符串就是map 的键值(key),数值就是map的数据(value). 由此可以把map理解为一个哈希表. 应用于map 的键值可以是下面任意一种数据类型: 1 * N 的字符串 单精度或者双精度的实数 有符号或者无符号的整形数 可以看出,矩阵不能作为键值. 而map的键值可以存储的数据是任意类型的,包括数值.字符串.单元类型等. map 的属性 属性 说明 默认值 Count 无符号64位整数,表…
好久没有更新blog了,最近抽时间看了Nielsen的<Neural Networks and Deep Learning>感觉小有收获,分享给大家. 了解深度学习的同学可能知道,目前深度学习面临的一个问题就是在网络训练的过程中存在梯度消失问题(vanishing gradient problem),或者更广义地来讲就是不稳定梯度问题.那么到底什么是梯度消失呢?这个问题又是如何导致的呢?这就是本文要分享的内容. 1. 消失的梯度 首先,我们将一个网络在初始化之后在训练初期的结果可视化如下: 在…
refer to:  https://www.kaggle.com/dansbecker/data-leakage There are two main types of leakage: Leaky Predictors and a Leaky Validation Strategies. Leaky Predictors This occurs when your predictors include data that will not be available at the time y…
了解LR的同学们都知道,LR采用了最小化交叉熵或者最大化似然估计函数来作为Cost Function,那有个很有意思的问题来了,为什么我们不用更加简单熟悉的最小化平方误差函数(MSE)呢? 我个人理解主要有三个原因: MSE的假设是高斯分布,交叉熵的假设是伯努利分布,而逻辑回归采用的就是伯努利分布: MSE会导致代价函数$J(\theta)$非凸,这会存在很多局部最优解,而我们更想要代价函数是凸函数: MSE相对于交叉熵而言会加重梯度弥散. 这里着重讨论下后边两条原因. 代价函数为什么要为凸函数…
感知机(perceptron)是一种线性分类模型,通常用于二分类问题.感知机由Rosenblatt在1957年提出,是神经网络和支持向量机的基础.通过修改损失函数,它可以发展成支持向量机:通过多层堆叠,它可以发展成神经网络.因此,虽然现在已经不再广泛使用感知机模型了,但是了解它的原理还是有必要的. 先来举一个简单的例子.比如我们可以通过某个同学的智商和学习时间(特征)来预测其某一次的考试成绩(目标),如果考试成绩在60分以上即为及格,在60分以下为不及格.这和线性回归类似,只不过设定了一个阈值,…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
matlab基础教程--根据Andrew Ng的machine learning整理 基本运算 算数运算 逻辑运算 格式化输出 小数位全局修改 向量和矩阵运算 矩阵操作 申明一个矩阵或向量 快速建立一个矩阵或向量 随机矩阵方阵生成 magic矩阵生成(每行每列相加和相同) 获取矩阵的维度size 获取矩阵的最大维度length 矩阵操作.获取单个元素.行.列.赋值 矩阵append.矩阵元素放到一个列向量中 矩阵运算 矩阵乘法 A*C:根据矩阵乘法公式相乘. A .* B:矩阵元素对应相乘. 矩…
概要   熟悉 Python 的都知道字典 Dict 类型数据结构功能的强大,Matlab 中虽然有表结构,但是其列名必须是亦变量名类型的字符串,如果我想用数字开头的字符串作键值,其表结构就无能为力了.此时 containers.Map 就派上用场了.   初始化操作   containers.Map 初始化一般有两种方式.第一种是先声明一个 Map 对象,然后依次添加键值对,示例如下: >> stocks = containers.Map; % 声明 Map 对象 >> stoc…
我在 B 站学机器学习(Machine Learning)- 吴恩达(Andrew Ng)[中英双语] 视频地址:https://www.bilibili.com/video/av9912938/ tensorflow:http://tensorflow123.com…
目录 1. \(l_0\)范数和\(l_1\)范数 2. \(l_2\)范数 3. 核范数(nuclear norm) 参考文献 使用正则化有两大目标: 抑制过拟合: 将先验知识融入学习过程,比如稀疏.低秩.平滑等特性. 结合第二点以及贝叶斯估计的观点,正则化项(regularizer)就是先验概率项. 监督学习中绝大多数任务都可以概括为以下最小化目标: \[ w^* = \arg\min_w {\sum_i {L(y_i; f(x_i;w))} + \lambda \Omega(w)} \]…
matlab中的containers.Map() 标签: matlabcontainers.Map容器map 2015-10-27 12:45 1517人阅读 评论(1) 收藏 举报  分类: Matlab/Octave(56)  版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   matlab中的containers.Map()有点类似于C++ STL中的map容器,具有key/value映射的功能. 一.新建变量 使用containers.Map()创建一个变量并…
大家好,我是Mac Jiang,今天和大家分享Coursera-NTU-機器學習基石(Machine Learning Foundations)-作业四 Q13-20的MATLAB实现. 曾经的代码都是通过C++实现的.可是发现C++实现这些代码太麻烦.这次作业还要频繁更改參数值,所以选择用MATLAB实现了.与C++相比.MATLAB实现显然轻松非常多.在数据导入方面也更加方便.我的代码尽管可以得到正确答案,可是当中可能有某些思想或者细节是错误的,假设各位博友发现,请及时留言纠正,谢谢.再次声…
一.Training of a Single-Layer Neural Network 1 Delta Rule Consider a single-layer neural network, as shown in Figure 2-11. In the figure, d i is the correct output of the output node i. Long story short, the delta rule adjusts the weight as the follow…
原文 :https://medium.com/machine-learning-in-practice/roles-on-a-machine-learning-project-216903a6dc12 Machine learning is a technical process, but it starts and ends with people. The first step to structuring your machine learning project is to consid…
What skills are needed for machine learning jobs?机器学习工作必须技能 原文: http://www.quora.com/Machine-Learning/What-skills-are-needed-for-machine-learning-jobs/answer/Joseph-Misiti Machine Learning: What skills are needed for machine learning jobs? I am a lea…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
1    Unsupervised Learning 1.1    k-means clustering algorithm 1.1.1    算法思想 1.1.2    k-means的不足之处 1.1.3    如何选择K值 1.1.4    Spark MLlib 实现 k-means 算法 1.2    Mixture of Gaussians and the EM algorithm 1.3    The EM Algorithm 1.4    Principal Components…
What: 就是将统计学算法作为理论,计算机作为工具,解决问题.statistic Algorithm. How: 如何成为菜鸟一枚? http://www.quora.com/How-can-a-beginner-train-for-machine-learning-contests 链接内容总结: "学习任何一门学科,framework是必不可少的东西.没有framework的东西,那是研究." -- Jason Hawk One thing is for sure; you ca…
Logistic regression is a method for classifying data into discrete outcomes. For example, we might use logistic regression to classify an email as spam or not spam. In this module, we introduce the notion of classification, the cost function for logi…
Machine Learning Lab1 打算把Andrew Ng教授的#Machine Learning#相关的6个实验一一实现了贴出来- 预计时间长度战线会拉的比較长(毕竟JOS的7级浮屠还没搞定.) ----------------------------------------------------------------------------------------------------------------------------------- 实验内容: 线性拟合 实验材…
Hi, Long time no see. Briefly, I plan to step into this new area, data analysis. In the past few years, I have tried Linux programming, device driver development, android application development and RF SOC development. Thus, "data analysis become my…
做机器学习的一定对支持向量机(support vector machine-SVM)颇为熟悉,因为在深度学习出现之前,SVM一直霸占着机器学习老大哥的位子.他的理论很优美,各种变种改进版本也很多,比如latent-SVM, structural-SVM等.这节先来看看SVM的理论吧,在(图一)中A图表示有两类的数据集,图B,C,D都提供了一个线性分类器来对数据进行分类?但是哪个效果好一些? (图一) 可能对这个数据集来说,三个的分类器都一样足够好了吧,但是其实不然,这个只是训练集,现实测试的样本…
 下面一文章就总结几点关键: 1.要学会观察,尤其是输入数据的特征提取时,看各输入数据和输出的关系,用绘图看! 2.训练后,看测试数据和训练数据误差,确定是否过拟合还是欠拟合: 3.欠拟合的话,说明模型不准确或者特征提取不够,对于特征提取不够问题,可以根据模型的反馈来看其和数据的相关性,如果相关系数是0,则放弃特征,如果过低,说明特征需要再次提炼! 4.用集成学习,bagging等通常可以获得更高的准确度! 5.缺失数据可以使用决策树回归进行预测! 转自:http://blog.csdn.net…
Machine Learning读书会,面试&算法讲座,算法公开课,创业活动,算法班集锦 近期活动: 2014年9月3日,第8次西安面试&算法讲座视频 + PPT 的下载地址:http://blog.csdn.net/v_july_v/article/details/7237351#t40: 2014年10月18日,北京10月机器学习班开班,全部PPT 的下载地址见:http://blog.csdn.net/v_july_v/article/details/7237351#t63: 201…
由于研究工作的需要,最近在看机器学习的一些基本的算法.选用的书是周志华的西瓜书--(<机器学习>周志华著)和<机器学习实战>,视频的话在看Coursera上Andrew Ng的<machine learning>.接下来的一些算法的会涉及到视频中的内容. 虽然是计算机科班出身,奈尔太菜,或许远远不够学习机器学习的基本要求.但是本人学习机器学习的目的是为了做数据挖掘的,也就是说不是研究算法本身而是做工程类的,那么理解算法的思路和过程即可,不需要纠结数学证明.所以接下来的博…
机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家以及统计学家罗纳德·费雪爵士在1912年至1922年间开始使用的. 最大似然估计的原理 给定一个概率分布,假定其概率密度函数(连续分布)或概率质量函数(离散分布)为,以及一个分布参数,我们可以从这个分布中抽出一个具有个值的采样,通过利用,我们就能计算出其概率: 但是,我们可能不知道的值,尽管我们知道…
1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最先是由David Cournapeau在2007年发起的一个Google Summer of Code项目,从那时起这个项目就已经拥有很多的贡献者了,而且该项目目前为止也是由一个志愿者团队在维护着. scikit-learn最大的特点就是,为用户提供各种机器学习算法接口,可以让用户简单.高效地进行数…
本文汇编了一些机器学习领域的框架.库以及软件(按编程语言排序). 1. C++ 1.1 计算机视觉 CCV —基于C语言/提供缓存/核心的机器视觉库,新颖的机器视觉库 OpenCV—它提供C++, C, Python, Java 以及 MATLAB接口,并支持Windows, Linux, Android and Mac OS操作系统. 1.2 机器学习 MLPack DLib ecogg shark 2. Closure Closure Toolbox—Clojure语言库与工具的分类目录 3…
Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 本系列文章是Andrew Ng 在斯坦福的机器学习课程 CS 229 的学习笔记. Machine Learning Algorithms Study Notes 系列文章介绍 2    Supervised Learning    3 2.1    Perceptron Learning Algorithm (PLA)    3 2.1.1    PLA --…
<Brief History of Machine Learning> 介绍:这是一篇介绍机器学习历史的文章,介绍很全面,从感知机.神经网络.决策树.SVM.Adaboost到随机森林.Deep Learning. <Deep Learning in Neural Networks: An Overview> 介绍:这是瑞士人工智能实验室Jurgen Schmidhuber写的最新版本<神经网络与深度学习综述>本综述的特点是以时间排序,从1940年开始讲起,到60-80…