Spark代码调优(一)】的更多相关文章

环境极其恶劣情况下: import org.apache.spark.SparkContext import org.apache.spark.rdd.RDD import org.apache.spark.sql.{DataFrame, Row, SQLContext} import org.apache.spark.sql.hive.HiveContext val sqlContext = new HiveContext(sc) val sql = sqlContext.sql("selec…
Spark性能调优之代码方面的优化 1.避免创建重复的RDD     对性能没有问题,但会造成代码混乱   2.尽可能复用同一个RDD,减少产生RDD的个数   3.对多次使用的RDD进行持久化(cache,persist,checkpoint) 如何选择一种最合适的持久化策略?     默认MEMORY_ONLY, 性能很高, 而且不需要复制一份数据的副本,远程传送到其他节点上(BlockManager中的BlockTransferService),但是这里必须要注意的是,在实际的生产环境中,…
一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体    1.代码调优 1.避免创建重复的RDD,尽量使用同一个RDD 2.对多次使用的RDD进行持久化 如何选择一种最合适的持久化策略? 默认情况下,性能最高的当然是MEMORY_ONLY,但前提是你的内存必须足够足够大,可以绰绰有余地存放下整个RDD的所有数据.因为不进行序列化与反序列化操作,就避免了这部分的性能开销:对这个RDD的后续算子操作,…
本課主題 大数据性能调优的本质 Spark 性能调优要点分析 Spark 资源使用原理流程 Spark 资源调优最佳实战 Spark 更高性能的算子 引言 我们谈大数据性能调优,到底在谈什么,它的本质是什么,以及 Spark 在性能调优部份的要点,这两点让在进入性能调优之前都是一个至关重要的问题,它的本质限制了我们调优到底要达到一个什么样的目标或者说我们是从什么本源上进行调优.希望这篇文章能为读者带出以下的启发: 了解大数据性能调优的本质 了解 Spark 性能调优要点分析 了解 Spark 在…
Spark调优 由于大部分Spark计算都是在内存中完成的,所以Spark程序的瓶颈可能由集群中任意一种资源导致,如:CPU.网络带宽.或者内存等.最常见的情况是,数据能装进内存,而瓶颈是网络带宽:当然,有时候我们也需要做一些优化调整来减少内存占用,例如将RDD以序列化格式保存(storing RDDs in serialized form).本文将主要涵盖两个主题:1.数据序列化(这对于优化网络性能极为重要):2.减少内存占用以及内存调优.同时,我们也会提及其他几个比较小的主题. 数据序列化…
转载:http://www.cnblogs.com/jcchoiling/p/6440709.html 一.大数据性能调优的本质 编程的时候发现一个惊人的规律,软件是不存在的!所有编程高手级别的人无论做什么类型的编程,最终思考的都是硬件方面的问题!最终思考都是在一秒.一毫秒.甚至一纳秒到底是如何运行的,并且基于此进行算法实现和性能调优,最后都是回到了硬件! 在大数据性能的调优,它的本质是硬件的调优!即基于 CPU(计算).Memory(存储).IO-Disk/ Network(数据交互) 基础上…
目录视图 摘要视图 订阅 [观点]物联网与大数据将助推工业应用的崛起,你认同么?      CSDN日报20170703——<从高考到程序员——我一直在寻找答案>      [直播]探究Linux的总线.设备.驱动模型! 数据倾斜是多么痛?spark作业调优秘籍 2017-06-27 13:28 39人阅读 评论(0) 收藏 举报  分类: Spark(124)  原文:https://mp.weixin.qq.com/s?__biz=MzI5OTAwMTM1MQ==&mid=2456…
Spark调优 | Spark Streaming 调优 1.数据序列化 2.广播大变量 3.数据处理和接收时的并行度 4.设置合理的批处理间隔 5.内存优化 5.1 内存管理 5.2优化策略 5.3垃圾回收(GC)优化 5.5Spark Streaming 内存优化 6.实例项目调优 6.1合理的批处理时间(batchDuration) 6.2合理的 Kafka 拉取量(maxRatePerPartition 参数设置) 6.3缓存反复使用的 Dstream(RDD) 6.4其他一些优化策略…
Spark性能调优之合理设置并行度 1.Spark的并行度指的是什么?     spark作业中,各个stage的task的数量,也就代表了spark作业在各个阶段stage的并行度!     当分配完所能分配的最大资源了,然后对应资源去调节程序的并行度,如果并行度没有与资源相匹配,那么导致你分配下去的资源都浪费掉了.同时并行运行,还可以让每个task要处理的数量变少(很简单的原理.合理设置并行度,可以充分利用集群资源,减少每个task处理数据量,而增加性能加快运行速度.)       举例:…
Spark性能调优之资源分配    性能优化王道就是给更多资源!机器更多了,CPU更多了,内存更多了,性能和速度上的提升,是显而易见的.基本上,在一定范围之内,增加资源与性能的提升,是成正比的:写完了一个复杂的spark作业之后, 进行性能调优的时候,首先第一步,我觉得,就是要来调节最优的资源配置:在这个基础之上, 如果说你的spark作业,能够分配的资源达到了你的能力范围的顶端之后,无法再分配更多的资源了, 公司资源有限:那么才是考虑去做后面的这些性能调优的点.         大体上这两个方…