Java下使用opencv进行人脸检测 工作需要,研究下人脸识别,发现opencv比较常用,尽管能检测人脸,但识别率不高,多数是用来获取摄像头的视频流的,提取里面的视频帧,实现人脸识别时通常会和其他框架搭配使用,比如face_recognition.SeetaFace Engine.Facenet.不过这里先简单介绍下opencv在java下的使用(网上大多都是C++的demo,这里是使用其java接口,还提供了python的接口). 这里简单说下opencv(版本为340)的安装 window…
转载地址http://www.cnblogs.com/ello/archive/2012/04/28/2475419.html 浅析人脸检测之Haar分类器方法  [补充] 这是我时隔差不多两年后, 回来编辑这篇文章加的这段补充, 说实话看到这么多评论很是惊讶, 有很多评论不是我不想回复, 真的是时间久了, 很多细节我都忘记了, 无力回复, 非常抱歉.  我本人并非做CV的, 这两年也都没有再接触CV, 作为一个本科毕业的苦逼码工, 很多理论基础都不扎实, 回顾这篇文章的时候, 我知道其实有很多…
一.物体分类: 这里使用的是caffe官网中自带的例子,我这里主要是对代码的解释~ 首先导入一些必要的库: import caffe import numpy as np import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = (10 , 10) #显示图像的最大范围,使用plt.rcParams['savefig.dpi']得到缺省的dpi值为100,则最大的图片范围为1000*10…
全文转载自CSDN的博客(不知道怎么将CSDN的博客转到博客园,应该没这功能吧,所以直接复制全文了),转载地址如下 http://blog.csdn.net/lsq2902101015/article/details/47057081 本篇文章主要介绍了如何使用OpenCV实现人脸检测.本文不具体讲解人脸检测的原理,直接使用OpenCV实现. OpenCV版本:2.4.10:VS开发版本:VS2012. 一.OpenCV人脸检测 要实现人脸识别功能,首先要进行人脸检测,判断出图片中人脸的位置,才…
原文地址:https://www.cnblogs.com/vipstone/p/8884991.html ==================================================== 技术实现思路 图片转换成灰色(去除色彩干扰,让图片识别更准确) 图片上画矩形 使用训练分类器查找人脸 具体实现代码 图片转换成灰色 使用OpenCV的cvtColor()转换图片颜色,代码如下: import cv2 filepath = "img/xingye-1.jpg"…
基于Haar特征Adaboost人脸检测级联分类 基于Haar特征Adaboost人脸检测级联分类,称haar分类器. 通过这个算法的名字,我们能够看到这个算法事实上包括了几个关键点:Haar特征.Adaboost.级联.理解了这三个词对该算法基本就掌握了. 1        算法要点 Haar分类器 = Haar-like特征 + 积分图方法 + AdaBoost +级联: Haar分类器算法的要点例如以下: a)        使用Haar-like特征做检測. b)       使用积分图…
1. 引言 在某些场景下,我们不仅需要进行实时人脸检测追踪,还要进行再加工:这里进行摄像头实时人脸检测,并对于实时检测的人脸进行初步提取: 单个/多个人脸检测,并依次在摄像头窗口,实时平铺显示检测到的人脸: 图 1 动态实时检测效果图 检测到的人脸矩形图像,会依次 平铺显示 在摄像头的左上方: 当多个人脸时候,也能够依次铺开显示: 左上角窗口的大小会根据捕获到的人脸大小实时变化: 图 2 单个/多个人脸情况下摄像头识别显示结果 2. 代码实现 主要分为三个部分: 摄像头调用,利用 OpenCv…
0. 引言 / Overview 介绍 Dlib 中基于 HOG,Histogram of Oriented Gradients / 方向梯度直方图 实现 Face Detect / 人脸检测 的两个 Examples / 例程 : 1. face_detector.py:   单张图片中的单个/多个人脸的面部定位 : 2. face_landmark_detection.py:  单张图片的脸部特征点标定 : 如果在 Windows下开发,在 Python 中安装 Dlib 有问题,可以参考我…
最近学习人脸识别相关的东西,在MFC下使用OpenCV做了一个简单的应用.训练需要较多的数据,windows应用程序终究还是不方便,于是想着做成CS模式:检测识别都放在服务器端,视频获取和显示都放在网页端. 在网上找了一些资料,实现了简单的人脸检测.人脸识别只要在这个框架上加点代码就行.主要参考了下面这篇文章: http://www.open-open.com/home/space-361-do-blog-id-8960.html jetty版本:jetty-9.2.17.v20160517 j…
这个提供的代码例子是Emgu CV提供的源码里面自带的例子,很好用,基本不需要改,代码做的是人脸检测不是人脸识别,这个要分清楚.再就是新版本的Emgu CV可能会遇到系统32位和64位处理方式有区别的问题,解决的办法不止一种,我这里的建议在条件允许的情况下尽量使用Emgu CV的早期版本,因为越新的版本的兼容性越差,早期的版本是不分32位和64位的,而且新版本的Emgu CV可能不再支持一些老的硬件,这也是选择老版本的原因,总之,是具体情况而定吧.这里只是给大家看看代码,要想运行起来,完整的解决…