OpenCV——轮廓特征描述】的更多相关文章

检测出特定轮廓,可进一步对其特征进行描述,从而识别物体. 1. 如下函数,可以将轮廓以多种形式包围起来. // 轮廓表示为一个矩形 Rect r = boundingRect(Mat(contours[])); rectangle(result, r, Scalar(), ); // 轮廓表示为一个圆 float radius; Point2f center; minEnclosingCircle(Mat(contours[]), center, radius); circle(result,…
特征描述 目标 在本教程中,我们将涉及: 使用 DescriptorExtractor 接口来寻找关键点对应的特征向量. 特别地: 使用 SurfDescriptorExtractor 以及它的函数 compute 来完成特定的计算. 使用 BruteForceMatcher 来匹配特征向量. 使用函数 drawMatches 来绘制检测到的匹配点. 理论 代码 这个教程代码如下所示. 你还可以 从这里下载到源代码 #include <stdio.h> #include <iostrea…
#include <stdio.h> #include <iostream> #include "opencv2/core/core.hpp" #include "opencv2/features2d/features2d.hpp" #include "opencv2/highgui/highgui.hpp" using namespace cv; void readme(); /** @function main */…
DoG(Difference of Gaussian) DoG (Difference of Gaussian)是灰度图像增强和角点检测的方法,其做法较简单,证明较复杂,具体讲解如下: Difference of Gaussian(DOG)是高斯函数的差分.我们已经知道可以通过将图像与高斯函数进行卷积得到一幅图像的低通滤波结果,即去噪过程,这里的Gaussian和高斯低通滤波器的高斯一样,是一个函数,即为正态分布函数. 那么difference of Gaussian 即高斯函数差分是两幅高斯图…
参考尺度空间理论 金字塔 当用一个机器视觉系统分析未知场景时,计算机没有办法预先知道图像中物体尺度,因此,我们需要同时考虑图像在多尺度下的描述,获知感兴趣物体的最佳尺度.所以在很多时候,我们会在将图像构建为一系列不同尺度的图像集,在不同的尺度中去检测我们感兴趣的特征.比如:在Harr特征检测人脸的时候,因为我们并不知道图像中人脸的尺寸,所以需要生成一个不同大小的图像组成的金字塔,扫描其中每一幅图像来寻找可能的人脸. 图像金字塔化的一般步骤:首先,图像经过一个低通滤波器进行平滑(这个步骤会使图像变…
阅读对象:对概率论中的期望有一点了解. 1.图像几何矩 1.1简述 图像的几何矩包括空间矩.中心矩和中心归一化矩.几何矩具有平移.旋转和尺度不变性,一般是用来做大粒度的区分,用来过滤显然不相关的图像. 1.2用数学语言阐述图像的几何矩 针对于一幅图像,我们把像素的坐标看成是一个二维随机变量(X,Y),那么一幅灰度图像可以用二维灰度密度函数来表示,每个像素点的值可以看成是该处的密度,对某点求期望就是该图像在该点处的矩(原点矩),一阶矩和零阶矩可以计算某个形状的重心,二阶矩可以计算形状的方向,因此可…
基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条.轮廓.块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以及做一些简单的基础应用. 一.Canny检测轮廓 在上一篇文章中有提到sobel边缘检测,并重写了soble的C++代码让其与matlab中算法效果一致,而soble边缘检测是基于单一阈值的,我们不能兼顾到低阈值的丰富边缘和高阈值时的边缘缺失这两个问题.而canny算子则很好的弥补了这一不足,从目前看来,canny边缘检测在…
http://ronny.blog.51cto.com/8801997/1394139 OpenCV成长之路:直线.轮廓的提取与描述 原创作品,允许转载,转载时请务必以超链接形式标明文章 原始出处 .作者信息和本声明.否则将追究法律责任.http://ronny.blog.51cto.com/8801997/1394139 基于内容的图像分析的重点是提取出图像中具有代表性的特征,而线条.轮廓.块往往是最能体现特征的几个元素,这篇文章就针对于这几个重要的图像特征,研究它们在OpenCV中的用法,以…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 29 理解图像特征 目标本节我会试着帮你理解什么是图像特征,为什么图像特征很重要,为什么角点很重要等.29.1 解释 我相信你们大多数人都玩过拼图游戏吧.首先你们拿到一张图片的一堆碎片,要做的就是把这些碎片以正确的方式排列起来从而重建这幅图像.问题是,你怎样做到的呢?如果把你做游戏的原理写成计算机程序,那计算机就也会玩拼图游戏了.如果计算机可以玩拼图,我们就可以给计算机一大堆自然图片,然后就可以让计算机把它拼成一张大图…
部分 V图像特征提取与描述 OpenCV-Python 中文教程(搬运)目录 34 角点检测的 FAST 算法 目标 • 理解 FAST 算法的基础 • 使用 OpenCV 中的 FAST 算法相关函数进行角点检测原理 我们前面学习了几个特征检测器,它们大多数效果都很好.但是从实时处理的角度来看,这些算法都不够快.一个最好例子就是 SLAM(同步定位与地图构建),移动机器人,它们的计算资源非常有限.为了解决这个问题,Edward_Rosten 和 Tom_Drummond 在 2006 年提出里…