保存在github上供广大网友下载:点击 8个zip,原文件,没有任何改动. 另外,不定期上传我自己关于这门课的学习过程笔记和心得,有兴趣的盆友可以点击这里查看.…
[目录][吴恩达课后作业目录] 吴恩达深度学习相关资源下载地址(蓝奏云) 课程 周数 名称 类型 语言 地址 课程1 - 神经网络和深度学习 第1周 深度学习简介 测验 中英 传送门 无编程作业 编程作业 -- -- 第2周 神经网络基础 测验 中英 传送门 具有神经网络思维的Logistic回归 编程作业 中文 传送门 第3周 浅层神经网络 测验 中英 传送门 带有一个隐藏层的平面数据分类 编程作业 中文 传送门 第4周 深度神经网络的关键概念 测验 中英 传送门 一步步搭建多层神经网络以及应…
[吴恩达课后作业目录] 课程 周数 名称 类型 语言 地址 课程1 - 神经网络和深度学习 第1周 深度学习简介 测验 中英 传送门 无编程作业 编程作业 —— —— 第2周 神经网络基础 测验 中英 传送门 具有神经网络思维的Logistic回归 编程作业 中文 传送门 第3周 浅层神经网络 测验 中英 传送门 带有一个隐藏层的平面数据分类 编程作业 中文 传送门 第4周 深度神经网络的关键概念 测验 中英 传送门 一步步搭建多层神经网络以及应用(1 & 2) 编程作业 中文 传送门 课程2…
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 4.正则化 1)加载数据 仍是问题: 'c' argument has 1 elements, which is not acceptable for use with 'x' with s 解决——直接导入函数: import scipy.io as sio def load_2D_dataset(is_plot=Tru…
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 两层神经网络,和吴恩达课后作业学习1-week3-homework-one-hidden-layer——不发布不同之处在于使用的函数不同线性->ReLU->线性->sigmod函数,训练的数据也不同,这里训练的是之前吴恩达课后作业学习1-week2-homework-logistic中的数据,判断是否为猫,查看使用…
参考:https://blog.csdn.net/u013733326/article/details/79767169 希望大家直接到上面的网址去查看代码,下面是本人的笔记 实现多层神经网络 1.准备软件包 import numpy as np import h5py import matplotlib.pyplot as plt import testCases #参见资料包,或者在文章底部copy from dnn_utils import sigmoid, sigmoid_backwar…
参考:https://blog.csdn.net/u013733326/article/details/79847918 希望大家直接到上面的网址去查看代码,下面是本人的笔记 初始化.正则化.梯度校验 1. 初始化参数:    1.1:使用0来初始化参数.    1.2:使用随机数来初始化参数.    1.3:使用抑梯度异常初始化参数(参见视频中的梯度消失和梯度爆炸).2. 正则化模型:    2.1:使用二范数对二分类模型正则化——L2正则化方法,尝试避免过拟合.    2.2:使用随机删除节…
吴恩达深度学习课程的课堂笔记以及课后作业 代码下载:https://github.com/douzujun/Deep-Learning-Coursera 吴恩达推荐笔记:https://mp.weixin.qq.com/s/cX9_DiqofPhdXrY_0oTEAw 课程1 - 神经网络和深度学习 周数 名称 类型 地址 week1 深度学习简介 测验 略 week2 神经网络基础 笔记 逻辑回归 逻辑回归推导 具有神经网络思维的Logistic回归 编程作业 识别猫 week3 浅层神经网络…
Google TensorFlow程序员点赞的文章!   前言 目录: - 向量表示以及它的维度 - rnn cell - rnn 向前传播 重点关注: - 如何把数据向量化的,它们的维度是怎么来的 - 一共其实就是两步: 单个单元的rnn计算,拉通来的rnn计算 ​ 在看本文前,可以先看看这篇文章回忆一下: 吴恩达deepLearning.ai循环神经网络RNN学习笔记(理论篇) 我们将实现以下结构的RNN,在这个例子中 Tx = Ty. 向量表示以及它的维度 Input with  nx …
1.问题描述 有209张图片作为训练集,50张图片作为测试集,图片中有的是猫的图片,有的不是.每张图片的像素大小为64*64 吴恩达并没有把原始的图片提供给我们 而是把这两个图片集转换成两个.h5文件:train_catvnoncat.h5(训练集),test_catvnoncat.h5(测试集). 这三这个文件的下载地址:https://pan.baidu.com/s/1bL8SC3gNxbzL9Xo4C6ybow    提取码: iaq7  这个h5文件是一种数据文件格式,关于它的写入和读取…