摘要写在一瞪眼. #include<iostream> using namespace std; long long exgcd(long long a,long long b,long long &k,long long &t) { if (b==0) { k=1; t=0; return a; } else { long long tp_gcd; tp_gcd=exgcd(b,a%b,k,t); long long temp; temp=k; k=t; t=temp-(a/…
//#pragma comment(linker, "/STACK:1024000000,1024000000") //#pragma GCC optimize(2) #include <algorithm> #include <iostream> #include<sstream> #include<iterator> #include<cstring> #include<string> #include<…
这个题乍一看跟剩余定理似的,但是它不满足两两互素的条件,所以不能用剩余定理,也是给了一组同余方程,找出一个X满足这些方程,如果找不到的话就输出-1 因为它不满足互素的条件,所以两个两个的合并,最后合成一个. 题目给定的是 M % m1 = r1 M % m2 = r2 ...... M % mn = rn 只需将两个式子合并成一个式子,那么这个合并的这个式子就可以继续和下面的式子继续合并,知道合到最后一个式子. 首先来看下两个式子怎么合并. M % m1 = r1    可以写成  M = k1…
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+by=c 设tm=gcd(a,b) 若c%tm!=0,则该方程无整数解. 否则,列出方程: a*x0+b*y0=tm 易用extend_gcd求出x0和y0 然后最终的解就是x=x0*(c/tm),y=y0*(c/tm) 注意:若是要求最小非负整数解? 例如求y的最小非负整数解, 令r=a/tm,则…
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这两只青蛙分别叫做青蛙A和…
题意:求\((n-m)t+Lk=x-y\)的解\(t\) #include<iostream> #include<algorithm> #include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<string> #include<vector> #include<stack> #include<qu…
#include<stdio.h> #include<string.h> #define max 32 typedef long long LL; LL pow2[max+]; void init(){ ;i<=max;i++){ pow2[i]=1LL<<i; } } LL a,b,c,k; void gcd(LL a,LL b,LL& d,LL& x,LL& y){ if(!b){ d=a; x=; y=; return; } gcd(…
#include<stdio.h> #include<string.h> typedef long long ll; void gcd(ll a,ll b,ll& d,ll& x,ll& y){ ){ d=a; x=; y=; return ; } gcd(b,a%b,d,y,x); y-=(a/b)*x; } int main(){ ll x,y,m,n,l; while(~scanf("%lld%lld%lld%lld%lld",&a…
点我看题目 题意 : 中文题不详述. 思路 : 设经过s步后两青蛙相遇,则必满足(x+m*s)-(y+n*s) = K*L(k = 0,1,2....) 变形得:(n-m)*s+K*L = x-y ; 另a = n-m,b = L,c = x-y,则上式变为a*s+b*k = c.于是就变成了扩展欧几里德,求解不定方程,线性同余方程.只要上式存在整数解,则这两个青蛙能相遇,否则不能. #include <stdio.h> #include <string.h> #include &…
题目地址:POJ 1061 扩展GCD好难懂.. 看了半天.最终把证明什么的都看明确了. .推荐一篇博客吧(戳这里),讲的真心不错.. 直接上代码: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #include <ctype.h> #inclu…