15-Transfer Learning】的更多相关文章

Understanding, generalisation, and transfer learning in deep neural networks FEBRUARY 27, 2017   This is the first in a series of posts looking at the ‘top 100 awesome deep learning papers.’ Deviating from the normal one-paper-per-day format, I’ll ta…
(缺少一些公式的图或者效果图,评论区有惊喜) (个人学习这篇论文时进行的翻译[谷歌翻译,你懂的],如有侵权等,请告知) StarCraft Micromanagement with Reinforcement Learning and Curriculum Transfer Learning 摘要 近年来,实时策略游戏一直是游戏人工智能的重要领域.本文提出了一个强化学习和课程转换学习方法来控制星际争霸微操作中的多个单位.我们定义了一个有效的状态表示,它可以打破游戏环境中大型状态空间造成的复杂性.…
迁移学习研究综述 Sinno Jialin Pan and Qiang Yang,Fellow, IEEE 摘要:   在许多机器学习和数据挖掘算法中,一个重要的假设就是目前的训练数据和将来的训练数据,一定要在相同的特征空间并且具有相同的分布.然而,在许多现实的应用案例中,这个假设可能不会成立.比如,我们有时候在某个感兴趣的领域有个分类任务,但是我们只有另一个感兴趣领域的足够训练数据,并且后者的数据可能处于与之前领域不同的特征空间或者遵循不同的数据分布.这类情况下,如果知识的迁移做的成功,我们将…
在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要对每个领域都标定大量训练数据,这将会耗费大量的人力与物力.而没有大量的标注数据,会使得很多与学习相关研究与应用无法开展…
资源:http://www.cse.ust.hk/TL/ 简介: 一个例子: 关于照片的情感分析. 源:比如你之前已经搜集了大量N种类型物品的图片进行了大量的人工标记(label),耗费了巨大的人力物力,构建了源情感分类器(即输入一张照片,可以分析出照片的情感).注:这里的情感不是指人物的情感,而是指照片中传达出来的情感,比如这张照片是积极的还是消极的. 目标:因为不同类型的物品,他们在源数据集中的分布也是不同的,所以为了维护一个很好的分类器性能,经常需要增加新的物品.传统的方式是搜集大量N+1…
原文地址:http://blog.csdn.net/miscclp/article/details/6339456 在传统的机器学习的框架下,学习的任务就是在给定充分训练数据的基础上来学习一个分类模型:然后利用这个学习到的模型来对测试文档进行分类与预测.然而,我 们看到机器学习算法在当前的Web挖掘研究中存在着一个关键的问题:一些新出现的领域中的大量训练数据非常难得到.我们看到Web应用领域的发展非常快速.大量新的领域不断涌现,从传统的新闻,到网页,到图片,再到博客.播客等等.传统的机器学习需要…
用深度学习的跨情感分类的迁移学习 情感分析主要用于预测人们在自然语言中表达的思想和情感. 摘要部分:two types of sentiment:sentiment polarity and politeness. 语义极性和politeness (礼貌用语) 数据集:在线资源数据库 训练源领域和目标领域的混合数据导致性能极大的提升. Transfer learning methods could be very useful in performing predictiond inpecial…
读论文系列:Deep transfer learning person re-identification arxiv 2016 by Mengyue Geng, Yaowei Wang, Tao Xiang, Yonghong Tian Transfer Learning 旧数据训练得到的分类器,在新的数据上重新训练,从而在新数据上取得比较好的表现,新数据与旧数据有相似的地方,但具有不同的分布. Fine tuning一般步骤 这是InceptionV4的图示 移除Softmax分类层 换成与…
迁移学习两种类型: ConvNet as fixed feature extractor:利用在大数据集(如ImageNet)上预训练过的ConvNet(如AlexNet,VGGNet),移除最后几层(一般是最后分类器),将剩下的ConvNet作为应用于新数据集的固定不变的特征提取器,输出特征称为CNN codes,如果在预训练网络上是经过ReLUd,那这些codes也要经过ReLUd(important for performance):提取出所有CNN codes之后,再基于新数据集训练一个…
论文可以在arxiv下载,老板一作,本人二作,也是我们实验室第一篇CCF A类论文,这个方法我们称为TFusion. 代码:https://github.com/ahangchen/TFusion 解决的目标是跨数据集的Person Reid 属于无监督学习 方法是多模态数据融合 + 迁移学习 实验效果上,超越了所有无监督Person reid方法,逼近有监督方法,在部分数据集上甚至超越有监督方法 本文为你解读CVPR2018 TFusion 转载请注明作者梦里茶 Task 行人重识别(Pers…