SIFT】的更多相关文章

已经有很多博客已经将sift特征提取算法解释的很清楚了,我只是记录一些我不明白的地方,并且记录几个理解sift特征比较好的博客. 1. http://aishack.in/tutorials/sift-scale-invariant-feature-transform-introduction/ 2. http://blog.csdn.net/abcjennifer/article/details/7639681/ 3.http://blog.csdn.net/xiaowei_cqu/artic…
先贴上我对Opencv3.1中sift源码的注释吧,虽然还有很多没看懂.先从detectAndCompute看起 void SIFT_Impl::detectAndCompute(InputArray _image, InputArray _mask, std::vector<KeyPoint>& keypoints, OutputArray _descriptors, bool useProvidedKeypoints) { , actualNOctaves = , actualNL…
opencv中的SIFT,SURF,ORB,FAST 特征描叙算子比较 参考: http://wenku.baidu.com/link?url=1aDYAJBCrrK-uk2w3sSNai7h52x_eWeRu9p9GhZd49WJ1bEOB7VluQdBdRKeehAO2Q3B7RatTXDruq-M9cR-W2yqATerDlIU1T3whYoyQfi http://www.cvchina.info/2011/07/04/whats-orb/ http://www.bubuko.com/in…
特征描述算子-sift http://boche.github.io/download/sift/Introduction%20to%20SIFT.pdf…
1.SIFT概述 SIFT的全称是Scale Invariant Feature Transform,尺度不变特征变换,由加拿大教授David G.Lowe提出的.SIFT特征对旋转.尺度缩放.亮度变化等保持不变性,是一种非常稳定的局部特征. 1.1 SIFT算法具的特点 图像的局部特征,对旋转.尺度缩放.亮度变化保持不变,对视角变化.仿射变换.噪声也保持一定程度的稳定性. 独特性好,信息量丰富,适用于海量特征库进行快速.准确的匹配. 多量性,即使是很少几个物体也可以产生大量的SIFT特征 高速…
SIFT中的尺度空间和传统图像金字塔 http://www.zhizhihu.com/html/y2010/2146.html 最近自己混淆了好多概念,一边弄明白的同时,也做了一些记录,分享一下.最近又发现了一个好同学的博客,很详细的讲了SIFT 想要得知图像中哪些是有意义的,必须先要明确这样一个问题:在一幅图像中,只有在一定的尺度范围内,一个物体才有意义.举一个例子,树枝这个概念,只有在几厘米到几米的距离去观察它,才能感知到它的确是树枝:如果在微米级或者千米级去观察,就不能感知到树枝这个概念了…
SIFT特征提取分析 sift 关键点,关键点检测 读'D. G. Lowe. Distinctive Image Features from Scale-Invariant Keypoints[J],IJCV,2004' 笔记 关键点是指图像中或者视觉领域中明显区别于其周围区域的地方,这些关键点对于光照,视角相对鲁棒,所以对图像关键点提取特征的好坏直接影响后续分类.识别的精度. 特征描述子就是对关键点提取特征的过程,应该具备可重复性.可区分性.准确性.有效性和鲁棒性. SIFT(Scale-I…
转载自: http://blog.csdn.net/abcjennifer/article/details/7639681 SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度…
1. SIFT算法中一些符号的说明 $I(x,y)$表示原图像. $G(x,y,\sigma)$表示高斯滤波器,其中$G(x,y,\sigma) = \frac{1}{2\pi\sigma^2}exp(-(x^2+y^2)/2\sigma^2)$. $L(x,y,\sigma)$表示由一个高斯滤波器与原图像卷积而生成的图像,即$L(x,y,\sigma) = G(x,y,\sigma)\otimes I(x,y)$.一系列的$\sigma_i$,则可以生成一系列的$L(x,y,\sigma_i)…
原文链接:http://www.cnblogs.com/cfantaisie/archive/2011/06/14/2080917.html   主要步骤 1).尺度空间的生成: 2).检测尺度空间极值点: 3).精确定位极值点: 4).为每个关键点指定方向参数: 5).关键点描述子的生成. L(x,y,σ), σ= 1.6 a good tradeoff     D(x,y,σ), σ= 1.6 a good tradeoff 关于尺度空间的理解说明:图中的2是必须的,尺度空间是连续的.在 …
转自 http://blog.csdn.net/stellar0/article/details/8741780 分类: 最近也注意一些图像拼接方面的文章,很多很多,尤其是全景图拼接的,实际上类似佳能相机附加的软件,好多具备全景图拼接,多幅图像自动软件实现拼接,构成(合成)一幅全景图像(风景). Sift算法,我略知一二,无法仔细描述(刚也贴了2个最近的资料).       当就尺度空间(scale space),我想,其在计算机视觉(Computer Vision)\图像的多分辨率分析(尤其近…
http://blog.sina.com.cn/s/blog_a6b913e30101dvrt.html 一.前提 安装Opencv,因该版本的SIFT是基于Opencv的. 下载SIFT源码,见Rob Hess的主页(别告诉我不懂英文不知道下载链接在哪,下那个Windows VC++的版本 sift-latest_win.zip). 其中有3个是解决方案文件夹:siftFeat.match和dspFeat,siftFeat工程是做SITF特征提取的,一般只会用到这个案例,match是利用SIF…
SIFT(Scale-invariant feature transform)是一种检测局部特征的算法,该算法通过求一幅图中的特征点(interest points,or corner points)及其有关scale 和 orientation 的描述子得到特征并进行图像特征点匹配,获得了良好效果,详细解析如下: 算法描述 SIFT特征不只具有尺度不变性,即使改变旋转角度,图像亮度或拍摄视角,仍然能够得到好的检测效果.整个算法分为以下几个部分: 1. 构建尺度空间 这是一个初始化操作,尺度空间…
理解SIFT.tab{font-size:12px; margin-bottom: 10px;}.tab a{cursor:pointer;cursor:pointer;display:inline-block;margin-right:10px;color:#000}#tab-html{color:#ccc}.content-container .content-html{visibility: hidden;}.content-container.html .content-markdown…
今天的计算机视觉课老师讲了不少内容,不过都是大概讲了下,我先记录下,细讲等以后再补充. SIFT特征: 尺度不变性:用不同参数的高斯函数作用于图像(相当于对图像进行模糊,得到不同尺度的图像),用得到的图像作差,找极值(相 当于穷举不同尺度空间的图像,找其特征点,在不同尺度下,都在极值范围之内,故能满足尺度不变性. 然后要找到极值点的位置,对其进行定位. 然后对极值进行描述. 旋转不变性:用梯度方向来表示极值点的方向,定义主方向能保证旋转不变性. 光照不变性 SIFT的特征点检测是在DOG图像上进…
http://blog.csdn.net/zddblog/article/details/7521424 目录(?)[-] 尺度不变特征变换匹配算法详解 Scale Invariant Feature TransformSIFT Just For Fun zdd  zddmailgmailcom or zddhubgmailcom SIFT综述 高斯模糊 1二维高斯函数 2 图像的二维高斯模糊 3分离高斯模糊 1 尺度空间理论 2 尺度空间的表示 3 高斯金字塔的构建 尺度空间在实现时使用高斯金…
尺度不变特征变换匹配算法详解Scale Invariant Feature Transform(SIFT)Just For Fun zdd  zddmail@gmail.com 对于初学者,从David G.Lowe的论文到实现,有许多鸿沟,本文帮你跨越. 1.SIFT综述 尺度不变特征转换(Scale-invariant feature transform或SIFT)是一种电脑视觉的算法用来侦测与描述影像中的局部性特征,它在空间尺度中寻找极值点,并提取出其位置.尺度.旋转不变量,此算法由 Da…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
原文:http://blog.csdn.net/v_JULY_v/article/details/6555899 SIFT算法的应用 -目标识别之用Bag-of-words模型表示一幅图像 作者:wawayu,July.编程艺术室出品. 出处:http://blog.csdn.net/v_JULY_v . 引言 本blog之前已经写了四篇关于SIFT的文章,请参考九.图像特征提取与匹配之SIFT算法,九(续).sift算法的编译与实现,九(再续).教你一步一步用c语言实现sift算法.上,及九(…
没下载下来... http://download.csdn.net/detail/shwaicy1314/7320695 原文翻译.应该是 2004年lowe写的吧 第八页 图C展示的 是小于0.03 的剩下的729个关键点.为什么是 小于 0.03呢? 图D附加一个 主曲率极限,剩下了 536个关键点. 所以 理论上读完20篇文献是够的!!!唉!!!之前的我 都在干什么啊!!! 第10页 4.1排除角反射 首先为了找到 sift点,一些 低对比度的点是要排除的. 其次应该就是 角反射点了. H…
利用opencv2.3来获取图片的sift特征,并输出到标准输出,可用重定向到文件. #include<cstdio> #include"opencv2/opencv.hpp" #include"opencv2/nonfree/nonfree.hpp" using namespace cv ; int main(){ Mat m = imread("test.jpg"); SIFT sift; vector<KeyPoint&g…
opencv中sift特征提取的步骤 使用SiftFeatureDetector的detect方法检测特征存入一个向量里,并使用drawKeypoints在图中标识出来 SiftDescriptorExtractor 的compute方法提取特征描述符,特征描述符是一个矩阵 使用匹配器matcher对描述符进行匹配,匹配结果保存由DMatch的组成的向量里 设置距离阈值,使得匹配的向量距离小于最小距离的2被才能进入最终的结果,用DrawMatch可以显示 代码 // 使用Flann进行特征点匹配…
/* 如果给两张图片,中间有相似点.要求做匹配.怎么做.我现在能讲么?   比如给了两幅图片,先求出sift点.   尺度空间极值检测.高斯模糊 关键点定位 关键点方向确定 关键点描述   kdtree 和 bbf 最优节点优先算法 进行两幅图片特征点的匹配,会涵盖一些不正确的匹配点   ransac 随机抽样一致,消除不合适的点 把需要匹配的点,限定到某一个正确的地方   根据这种匹配的结果.确定两幅图相交的某一个点.   比如两幅图的重叠方式是,左上右下的方式,那么在不重叠的地方,按照左边图…
原博客来自:http://blog.csdn.net/zddblog/article/details/7521424 定义: 尺度不变特征转化是一种计算机视觉算法,用于侦测和描述物体的局部性特征,在空间尺度中寻找极值点,这个点是关于大小,明暗,仿射变换稳定的,由David Lowe在1999年发表,2004年总结. 应用场景: 物体识别.机器人地图感知与导航.影像缝合.3d场景建立.手势识别.影像追踪.动作对比. 专利所属: 英属哥伦比亚大学. 简述: 局部影像特征的描述与侦测可以帮助识别物体,…
因为在前两天的学习中发现.在opencv环境中跑动sift特征点提取还是比较困难的. 所以在此,进行记述. 遇到的问题分别有,csdn不愿意花费积分.配置gtk困难.教程海量然而能跑者鲜.描述不详尽等. [然后我却是发现这个borwhess实在是不知道叫先生何名为好.] 话归正题. 以下跑动具体过程: 首先去: http://blog.csdn.net/masibuaa/article/details/9246493 发现main.cpp 也就是:检测sift的部分. 这个回头慢慢凿.先跑起来:…
今天开始磕代码部分. part1: 1. sift特征提取. img1_Feat = cvCloneImage(img1);//复制图1,深拷贝,用来画特征点 img2_Feat = cvCloneImage(img2);//复制图2,深拷贝,用来画特征点 //默认提取的是LOWE格式的SIFT特征点 //提取并显示第1幅图片上的特征点 n1 = sift_features( img1, &feat1 );//检测图1中的SIFT特征点,n1是图1的特征点个数 export_features(&q…
opencv在2.4.4版本以后添加了对java的最新支持,可以利用java api了.下面就是我利用opencv的java api 提取图片的sift特征. import org.opencv.core.Core; import org.opencv.core.Mat; import org.opencv.core.MatOfKeyPoint; import org.opencv.highgui.Highgui; import org.opencv.features2d.*; public c…
今天总算是机缘巧合的找到了照样一篇纲要性质的文章. 如是能早一些找到就好了.不过“在你认为为时已晚的时候,其实还为时未晚”倒是也能聊以自慰,不过不能经常这样迷惑自己,毕竟我需要开始跑了! 就照着这个大纲往下走走,说不定会有意想不到的收获,然后把多视点的问题加进去,或许应该能有所成效. 嗯,其他的太多的东西想来也无用. 我觉得现在比较重要的事情是,顺着这样一篇文章继续我要做的东西. 原文<RobHess的SIFT源码分析:综述>地址: http://blog.csdn.net/masibuaa/…
SIFT(Scale Invariant Feature Transform),尺度空间不变特征,目前手工设计的最好vision特征. 以下是学习http://blog.csdn.net/zddblog/article/details/7521424后的收获. 一.尺度空间 gaussian pyramid的产生: 1.为避免对第一组第一层图片(原始图片)做高斯滤波导致损失,在其基础上将尺度扩大一倍作为-1层,方法是用=0.5做高斯滤波. 2.对每组(octave)倒数第三张图片做降采样,产生下…
SIFT算法:DoG尺度空间生产  SIFT算法:KeyPoint找寻.定位与优化 SIFT算法:确定特征点方向  SIFT算法:特征描述子 目录: 1.确定描述子采样区域 2.生成描述子 2.1 旋转图像至主方向 2.2 生成特征向量 3.归一化特征向量 附:SIFT开源代码集 1 确定描述子采样区域 SIFI 描述子h(x, y, θ)是对特征点附近邻域内高斯图像梯度统计结果的一种表示,它是一个三维的阵列,但通常将它表示成一个矢量.矢量是通过对三维阵列按一定规律进行排列得到的.特征描述子与特…