bzoj1812 [Ioi2005]riv】的更多相关文章

riv 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫Bytetown 在Byteland国,有n个伐木的村庄,这些村庄都座落在河边.目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料.木料被砍下后,顺着河流而被运到Bytetown的伐木场.Byteland的国王决定,为了减少运输木料的费用,再额外地建造k个伐木场.这k个伐木场将被建…
题意 题目链接 Sol 首先一个很显然的思路是直接用\(f[i][j] / g[i][j]\)表示\(i\)的子树中选了\(j\)个节点,该节点是否选的最小权值.但是直接这样然后按照树形背包的套路转移的话会有一种情况无法处理,就是说该节点不选,儿子节点也不选,这样我们就不清楚儿子节点的子节点的贡献了 一种暴力的做法是钦定该节点选,并重新枚举子树中的所有节点,转移出dp值之后背包合并 最后再把\(0\)号节点的合并一次 #include<bits/stdc++.h> #define chmin(…
题目链接 problem 给出一棵树,每个点有点权,每条边有边权.0号点为根,每个点的代价是这个点的点权\(\times\)该点到根路径上的边权和. 现在可以选择最多K个点.使得每个点的代价变为:这个点的点权\(\times\)改点到最近的被选中的一个祖先的边权和. 问所有点的代价和最小为多少. solution 用\(g[i][j]\)表示以i为根的子树,强制选i,最大的贡献(这里的贡献是指比什么也不选所减少的代价.) 最终答案肯定就是初始代价-g[0][k] 考虑怎么维护出\(g\).用\(…
[BZOJ1812][Ioi2005]riv Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄——名叫Bytetown 在Byteland国,有n个伐木的村庄,这些村庄都座落在河边.目前在Bytetown,有一个巨大的伐木场,它处理着全国砍下的所有木料.木料被砍下后,顺着河流而被运到Bytetown的伐木场.Byteland的国王决定,为了…
树背包, 左儿子右兄弟来表示树, dp(x, y, z)表示结点x, x的子树及x的部分兄弟共建y个伐木场, 离x最近的伐木场是z时的最小代价. 时间复杂度O(N^2*K^2) ------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace s…
1812: [Ioi2005]riv Time Limit: 10 Sec Memory Limit: 64 MB Submit: 635 Solved: 388 [Submit][Status][Discuss] Description 几乎整个Byteland王国都被森林和河流所覆盖.小点的河汇聚到一起,形成了稍大点的河.就这样,所有的河水都汇聚并流进了一条大河,最后这条大河流进了大海.这条大河的入海口处有一个村庄--名叫Bytetown 在Byteland国,有n个伐木的村庄,这些村庄都座…
题意:给定一棵树,每个点有权值,每条边有边权(单向边).你可以选取K个黑点,使得从每个点移动到距离他最近的黑点的花费(距离*点权)的总和最小. n<=100 k<=50 w[i],a[i]<=10000 思路:见IOI2005龙凡解题报告 为什么要多叉转二叉?因为假设点U被选,这个被选点只会对U自己的儿子有影响,对U的兄弟并没有影响 dp[i,j,k]表示以i为根的子树,建j个节点,离i最近的被选点是k时的最小总和 \[ dp[i,j,k]=min\begin{cases} dp[l[i…
传送门: 很常规的一道树规,转为左儿子右兄弟. 然后$f[node][anc][K]$表示在node节点上,最近的有贡献祖先在anc上,在node的儿子和兄弟上有k个有贡献节点的最优值. 然后得出以下转移方程. $f[node][anc][K]=min\{f[son[node]][anc][k]+f[bro[node]][anc][K-k]\}+Value[node]*(dis[node]-dis[anc])$无贡献 $f[node][anc][K]=min\{f[son[node]][node…
BZOJ 洛谷 这个数据范围..考虑暴力一些把各种信息都记下来.不妨直接令\(f[i][j][k][0/1]\)表示当前为点\(i\),离\(i\)最近的建了伐木场的\(i\)的祖先为\(j\),\(i\)及\(i\)子树一共建了\(k\)个伐木场.\(0/1\)表示点\(i\)是否建了伐木场. 发现对于\(i\)的子树里的点\(v\),\(v\)建没建伐木场无所谓,需要的是它建了多少.所以DP完\(i\)后,\(i\)只保留\(f[i]...[0/1]\)中较小的一个作为点\(i\)的答案即可…
树形dp,设f[i][j][k]表示第i个点的子树中选择j个点作为伐木场,而且k是建了伐木场的最浅的i的祖先的情况下,最小的收益. 这种题还要练一下,咕咕 然后转移可以n4方做. // luogu-judger-enable-o2 #include<bits/stdc++.h> #define il inline #define vd void typedef long long ll; il int gi(){ int x=0,f=1; char ch=getchar(); while(!i…