看了一篇IEEE Trans上的关于CS图像重构的OMP算法的文章,大部分..看不懂,之前在看博客的时候对流程中的一些标号看不太懂,看完论文之后对流程有了一定的了解,所以在这里解释一下流程,其余的如果以后有用到的话再学习看看. 文章中有这么一段话: 这句话的意思是说,压缩感知中的信号重构和稀疏近似,也就是稀疏分解的原理其实是一样的.在CS恢复中∵s只有m个非零项,所以观测向量v是字典Phi中m列的线性组合.在稀疏分解说我们说v在字典Phi中有m个展开项. 接着说说论文中的OMP算法流程: 之前学…
论文在第二部分先提出了贪婪算法框架,如下截图所示: 接着根据原子选择的方法不同,提出了SWOMP(分段弱正交匹配追踪)算法,以下部分为转载<压缩感知重构算法之分段弱正交匹配追踪(SWOMP)> 分段弱正交匹配追踪(StagewiseWeak OMP)可以说是StOMP的一种改进算法,它们的唯一不同是选择原子时的门限设置,这可以降低对测量矩阵的要求.我们称这里的原子选择方式为“弱选择”(Weak Selection),详见文献[1]的第3部分“III. STAGEWISE WEAK ELEMEN…
之前所学习的论文中求解稀疏解的时候一般采用的都是最小二乘方法进行计算,为了降低计算复杂度和减少内存,这篇论文梯度追踪,属于贪婪算法中一种.主要为三种:梯度(gradient).共轭梯度(conjugate gradient).近似共轭梯度(an approximation to the conjugate gradient),看师兄之前做压缩感知的更新点就是使用近似共轭梯度方法代替了StOMP中的最小二乘的步骤. 首先说明一下论文中的符号表示: Γn表示第n次迭代过程中所选择的原子的索引 ΦΓn…
论文介绍:Unified Adaptive Relevance Distinguishable Attention Network for Image-Text Matching (统一的自适应相关性可区分注意力网络)IEEE Trans. MultiMedia 主要优势: 1)首次提出一种自适应的相关性区分注意力学习框架.在对比学习的相对概念下,通过将注意力阈值也统一到学习过程,实现一种相互提升的优化方式,能够在学习更具备对齐区分性的特征嵌入同时,获取最优的注意力区分阈值. 2)通过自适应学习…
K-SVD可以看做K-means的一种泛化形式,K-means算法总每个信号量只能用一个原子来近似表示,而K-SVD中每个信号是用多个原子的线性组合来表示的.    K-SVD算法总体来说可以分成两步,首先给定一个初始字典,对信号进行稀疏表示,得到系数矩阵.第二步根据得到的系数矩阵和观测向量来不断更新字典. 设D∈R n×K,包含了K个信号原子列向量的原型{dj}j=1K,y∈R n的信号可以表示成为这些原子的稀疏线性结合.也就是说y=Dx,其中x∈RK表示信号y的稀疏系数.论文中采用的是2范数…
第三节课的内容.这节课上课到半截困了睡着了,看着大家都很积极请教认真听讲,感觉很惭愧.周末不能熬太晚.这个博客就记录一下醒着时候听到的内容. Motivation 目前的时代需要处理的数据量维度可能很高,比如1024*960分辨率的图片转化成向量维度就是100万左右.对于当代搜索引擎需要处理的数据更是如此,大数据时代已经来临. 而我们直到,对于普通的对比信息检索,时间复杂度为$O(n)$,当然,如果加上维度$D$,数据检索复杂度变成了$O(Dn)$,要知道这里的D很大,属于高纬度数据,甚至远大于…
https://www.computer.org/cms/Computer.org/transactions/templates/ https://www.computer.org/web/tpami/author…
压缩感知代码初学 实现:1-D信号压缩传感的实现 算法:正交匹配追踪法OMP(Orthogonal Matching Pursuit)   >几个初学问题   1. 原始信号f是什么?我采集的是原始信号f还是y = Af得到的y? 记原始信号为f,我们在sensor方得到的原始信号就是n*1的信号f,而在receiver方采集到的信号是y.针对y=Af做变换时,A(m*n )是一个随机矩阵(真的很随机,不用任何正交啊什么的限定).通过由随机矩阵变换内积得到y,我们的目标是从y中恢复f.由于A是m…
正交匹配追踪(OMP)算法的MATLAB函数代码并给出单次测试例程代码 测量数M与重构成功概率关系曲线绘制例程代码 信号稀疏度K与重构成功概率关系曲线绘制例程代码   参考来源:http://blog.csdn.net/jbb0523/article/details/45130793 参考文献:Joel A. Tropp and Anna C. Gilbert. Signal Recovery From Random Measurements Via Orthogonal Matching Pu…
主要内容: OMP的算法流程 OMP的MATLAB实现 一维信号的实验与结果 测量数M与重构成功概率关系的实验与结果 稀疏度K与重构成功概率关系的实验与结果 一.OMP的算法流程 二.OMP的MATLAB实现(CS_OMP.m) function [ theta ] = CS_OMP( y,A,iter ) % CS_OMP % y = Phi * x % x = Psi * theta % y = Phi * Psi * theta % 令 A = Phi*Psi, 则y=A*theta %…