numpy.concatenate】的更多相关文章

numpy库数组拼接np.concatenate 原文:https://blog.csdn.net/zyl1042635242/article/details/43162031 思路:numpy提供了numpy.concatenate((a1,a2,...), axis=0)函数.能够一次完成多个数组的拼接.其中a1,a2,...是数组类型的参数 示例3: >>> a=np.array([1,2,3])>>> b=np.array([11,22,33])>>…
在使用numpy进行矩阵运算的时候踩到的坑,原因是不能正确区分numpy.concatenate和numpy.stack在功能上的差异. 先说numpy.concatenate,直接看文档: numpy.concatenate((a1, a2, ...), axis=0, out=None) Join a sequence of arrays along an existing axis. Parameters a1, a2, … : sequence of array_like The arr…
import numpy as np a = np.array([[1, 2], [3, 4]]) a.shape Out[3]: (2, 2) b = np.array([[5, 6]]) b.shape Out[5]: (1, 2) np.concatenate((a, b)) Out[6]: array([[1, 2], [3, 4], [5, 6]]) c= np.concatenate((a, b)) c.shape Out[8]: (3, 2) d = np.concatenate(…
感觉numpy.hstack()和numpy.column_stack()函数略有相似,numpy.vstack()与numpy.row_stack()函数也是挺像的. stackoverflow上也有类似的讨论,在这里numpy vstack vs. column_stack. 给一个相关函数的列表: stack()    Join a sequence of arrays along a new axis. hstack()    Stack arrays in sequence horiz…
stack():沿着新的轴加入一系列数组. vstack():堆栈数组垂直顺序(行) hstack():堆栈数组水平顺序(列). dstack():堆栈数组按顺序深入(沿第三维). concatenate():连接沿现有轴的数组序列. vsplit():将数组分解成垂直的多个子数组的列表. 1.numpy.stack()函数 函数原型:numpy.stack(arrays,axis=0) 示例:   2.numpy.hstack()函数 函数原型:numpy.hstack(tup),其中tup是…
concatenate功能:数组拼接 函数定义:numpy.concatenate((a1, a2, ...), axis=0, out=None)…
Python numpy函数hstack() vstack() stack() dstack() vsplit() concatenate() 觉得有用的话,欢迎一起讨论相互学习~Follow Me 转载链接 numpy.stack()函数 函数原型:numpy.stack(arrays, axis=0) 程序实例: >>> arrays = [np.random.randn(3, 4) for _ in range(10)] >>> np.stack(arrays,…
数组拼接方法一 思路:首先将数组转成列表,然后利用列表的拼接函数append().extend()等进行拼接处理,最后将列表转成数组. 示例1: import numpy as np a=np.array([1,2,5]) b=np.array([10,12,15]) a_list=list(a) b_list=list(b) a_list.extend(b_list) a_list [1, 2, 5, 10, 12, 15] a=np.array(a_list) a array([ 1,  2…
1.引言 最近在做多模态融合的图像问题,其中最需要解决的就是不同模态的图像用什么方法进行融合,最简单也最直观的方法就是采用合并数组的方法,将不同模态的图像合并为多通道进行处理.在一些论文中,比如<Deep Learning-Based Image Segmentation on Multimodal Medical Imaging>中,如图1.1所示,论文中发现简单的concat 成多通道进行处理反而会比经过一部分网络提取特征后再融合效果更好.不过不同的情况需要具体分析,在<Fusion…
concatenate() 我们先来介绍最全能的concatenate()函数,后面的几个函数其实都可以用concatenate()函数来进行等价操作. concatenate()函数根据指定的维度,对一个元组.列表中的list或者ndarray进行连接,函数原型: numpy.concatenate((a1, a2, ...), axis=0) 先来看几个例子,一个2*2的数组和一个1*2的数组,在第0维进行拼接,得到一个3*2的数组: a = np.array([[1, 2], [3, 4]…