认识 svm 在求解时, 通过某非线性变换 φ( x) ,将输入空间映射到高维特征空间.特征空间的维数可能非常高.如果支持向量机的求解只用到内积运算,而在低维输入空间又存在某个函数 K(x, x′) ,它恰好等于在高维空间中这个内积,即K( x, x′) =<φ( x) ⋅φ( x′) > .那么支持向量机就不用计算复杂的非线性变换,而由这个函数 K(x, x′) 直接得到非线性变换的内积,使大大简化了计算.这样的函数 K(x, x′) 称为核函数. 显然, 这样的论调, 让你似懂非懂, 待我…
算法基础:BFS和DFS的直观解释 https://cuijiahua.com/blog/2018/01/alogrithm_10.html 一.前言 我们首次接触 BFS 和 DFS 时,应该是在数据结构课上讲的 “图的遍历”.还有就是刷题的时候,遍历二叉树我们会经常用到BFS和DFS.它们的实现都很简单,这里我就不哆嗦去贴代码了. 想看代码的可以看<剑指Offer(三十八):二叉树的深度>这个题目就可以利用BFS和DFS进行求解.那么,这两者“遍历” 的序列到底有何差别? 本篇文章就单纯来…
PCA 这个名字看起来比较玄乎,其实就是给数据换一个坐标系,然后非常生硬地去掉一些方差很小的坐标轴. 例:三维空间中,有一些数据只分布在一个平面上,我们通过"坐标系旋转变换",使得数据所在的平面与 \(x\),\(y\) 平面重合,那么我们就可以用 \(x'\),\(y'\) 两个维度表达原始数据,并且没有任何损失. 在低维的空间中,我们可以用几何直观来解释:同样的数据,用不同的坐标系表示. 在高维的空间中,我们就得通过代数的方法来依次寻找这些坐标轴方向,第 1 坐标轴方向就是第一主成…
常见的激活函数有sigmoid.tanh和relu三种非线性函数,其数学表达式分别为: sigmoid: y = 1/(1 + e-x) tanh: y = (ex - e-x)/(ex + e-x) relu: y = max(0, x) 其代码实现如下: import numpy as np import matplotlib.pyplot as plt def sigmoid(x): return 1 / (1 + np.exp(-x)) def tanh(x): return (np.e…
Sigmoid function也叫Logistic function, 在logistic regression中扮演将回归估计值h(x)从 [-inf, inf]映射到[0,1]的角色. 公式为:g(z) = 1 / (1 + exp(-z)) 如图: 其输出值大于0.5这认为待分类对象属于1,否则则属于0. 这个值得直观意义便是结果预测正确的概率. 例如:当sigmoid(h(x)) = 0.7时,表示特征为x的对象属于1的概率为0.7,为0的概率为0.3.…
https://blog.csdn.net/jinping_shi/article/details/52433975…
有两个php页面,demo1.php与demo2.php.如果想要在demo1.php创建一个session需要在的demo2.php或者说其它页面都可以获取到设置的session的值,达到会话的功能,有几种实现方式? 一.未屏蔽浏览器cookie demo1.php代码: <?php session_start(); $sid = session_id(); echo "sessionid:".$sid."<br/>"; $_SESSION['u…
Support Vector Machines 引言 内核方法是模式分析中非常有用的算法,其中最著名的一个是支持向量机SVM 工程师在于合理使用你所拥有的toolkit 相关代码 sklearn-SVM 本文要点 1.Please explain Support Vector Machines (SVM) like I am a 5 year old - Feynman Technique 2.kernel trick 一.术语解释 1.1 what is support vector? 从名词…
0. 前言 之前上模式识别课程的时候,老师也讲过 MLP 的 BP 算法, 但是 ppt 过得太快,只有一个大概印象.后来课下自己也尝试看了一下 stanford deep learning 的 wiki, 还是感觉似懂非懂,不能形成一个直观的思路.趁着这个机会,我再次 revisit 一下.本文旨在说明对 BP 算法的直观印象,以便迅速写出代码,具体偏理论的链式法则可以参考我的下一篇博客(都是图片,没有公式). 1. LMS 算法 故事可以从线性 model 说起(顺带复习一下)-在线性 mo…
核函数 在上文中我们已经了解到使用SVM处理线性可分的数据,而对于非线性数据需要引入核函数的概念它通过将数据映射到高维空间来实现线性可分.在线性不可分的情况下,支持向量机通过某种事先选择的非线性映射(核函数)将输入变量映射到一个高维特征空间,在这个空间中构造最优分类超平面.我们使用SVM进行数据集分类工作的过程首先是同预先选定的一些非线性映射将输入空间映射到高维特征空间(下图很清晰的表达了通过映射到高维特征空间,而把平面上本身不好分的非线性数据分了开来) 只要给出φ,计算出φ(x)和φ(z),再…