推到了一个推不下去的形式,然后就不会了 ~ 看题解后傻了:我推的是对的,推不下去是因为不需要再推了. 复杂度看似很大,但其实是均摊 $O(n)$ 的,看来分析复杂度也是一个能力啊 ~ code: #include <bits/stdc++.h> #define ll long long #define N 500006 #define mod 1000000007 #define setIO(s) freopen(s".in","r",stdin) us…
BZOJ 3561 DZY Loves Math VI 求\(\sum_{i=1}^{n}\sum_{j=1}^{m}\text{lcm}(i,j)^{\gcd(i,j)}\),钦定\(n\leq m\) \(\sum_{i=1}^{n}\sum_{j=1}^{m}(\frac{ij}{{\gcd(i,j)}})^{\gcd(i,j)}\) 按套路,提出\(\gcd(i,j)\),枚举的\(i\),\(j\)都除\(g\) \(\sum_{g=1}^ng^g\sum_{i=1}^{n/g}\su…
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3561 题解: 莫比乌斯反演 $$\begin{aligned}ANS&=\sum_{i=1}^{n}\sum_{j=1}^{m}lcm(i,j)^{gcd(i,j)}\\&=\sum_{g=1}^{min(n,m)}\sum_{i=1}^{\frac{n}{g}}\sum_{j=1}^{\frac{m}{g}}g^gi^gj^g[gcd(i,j)==1]\\&=\sum_{g…
题目描述 给定正整数n,m.求   输入 一行两个整数n,m. 输出 一个整数,为答案模1000000007后的值. 样例输入 5 4 样例输出 424 题解 莫比乌斯反演 (为了方便,以下公式默认$n\le m$) $\ \ \ \ \sum\limits_{i=1}^n\sum\limits_{j=1}^mlcm(i,j)^{gcd(i,j)}\\=\sum\limits_{d=1}^n\sum\limits_{i=1}^n\sum\limits_{j=1}^m[gcd(i,j)=d](\f…
传送门 看到\(gcd\)相关先推式子(默认\(N \leq M\)): \(\begin{align*} \sum\limits_{i=1}^N \sum\limits_{j=1}^M (lcm(i,j))^{gcd(i,j)} & = \sum\limits_{d=1}^N d^d \sum\limits_{i=1}^\frac{N}{d} \sum\limits_{j=1}^\frac{M}{d} (ij)^{d} \sum\limits_{p \mid gcd(i,j)} \mu(p)…
3561: DZY Loves Math VI Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 205  Solved: 141 Description 给定正整数n,m.求 Input 一行两个整数n,m. Output 一个整数,为答案模1000000007后的值. Sample Input 5 4 Sample Output 424 HINT 数据规模: 1<=n,m<=500000,共有3组数据. Source By Jcvb [分析]…
[BZOJ3309]DZY Loves Math(莫比乌斯反演) 题面 求 \[\sum_{i=1}^a\sum_{j=1}^bf(gcd(a,b))\] 其中,\(f(x)\)表示\(x\)分解质因数之后,最高的幂次 题解 完全不会莫比乌斯反演了. 先来推式子 \[\sum_{d=1}^a\sum_{i=1}^{a/d}\sum_{j=1}^{b/d}[gcd(i,j)=1]f(d)\] \[\sum_{d=1}^af(d)\sum_{i=1}^{a/d}\sum_{j=1}^{b/d}[gc…
一通正常的莫比乌斯反演后,我们只需要求出g(n)=Σf(d)*μ(n/d)的前缀和就好了. 考虑怎么求g(n).当然是打表啊.设n=∏piai,n/d=∏pibi .显然若存在bi>1则这个d没有贡献.考虑bi为0和1两种情况.如果只看ai最小的质因子的选取情况,会发现大部分情况下其是0还是1,对f的取值是没有影响的,但会使μ取反,于是就抵消为0.而特殊情况即为所有ai均相同,此时若所有bi都取1会使f减少.与一般情况比较可以得到此时g(n)=(-1)质因子个数+1. 然后就可以线性筛了.记录一…
OK!开始更新莫比乌斯反演 先看了一下数据范围,嗯,根据\(jiry\)老师的真言,我们一定是可以筛一遍然后用根号或者是\(log\)的算法. 题目思路挺简单,就是把原始的式子化成: \(\sum_{k = 1}^{min(a,b)}(a/k)(b/k) \sum_{d | k} f(d) * \mu (k / d)\) 由于莫反的函数是建立在积性上的,但是后面那个显然不是积性. 我们考虑把后面的式子代换一下:\(g(n) = \sum_{d|n}f(n/d) * \mu(d)\) 考虑\(\m…
题意 求\(\sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)}\)(\(n, m<=500000\)) 分析 很显然要死推莫比乌斯 题解 设\(n \le m\) \[ \begin{aligned} ans & = \sum_{i=1}^{n} \sum_{j=1}^{m} lcm(i, j)^{gcd(i, j)} \\ & = \sum_{i=1}^{n} \sum_{j=1}^{m} (\frac{ij}{gcd(i, j)…