首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
利用KD树进行异常检测
】的更多相关文章
利用KD树进行异常检测
软件安全课程的一次实验,整理之后发出来共享. 什么是KD树 要说KD树,我们得先说一下什么是KNN算法. KNN是k-NearestNeighbor的简称,原理很简单:当你有一堆已经标注好的数据时,你知道哪些是正类,哪些是负类.当新拿到一个没有标注的数据时,你想知道它是哪一类的.只要找到它的邻居(离它距离短)的点是什么类别的,所谓近朱者赤近墨者黑,KNN就是采用了类似的方法. 如上图,当有新的点不知道是哪一类时,只要看看离它最近的几个点是什么类别,我们就判断它是什么类别. 举个例子:我们将k取3…
基于变分自编码器(VAE)利用重建概率的异常检测
本文为博主翻译自:Jinwon的Variational Autoencoder based Anomaly Detection using Reconstruction Probability,如侵立删 http://dm.snu.ac.kr/static/docs/TR/SNUDM-TR-2015-03.pdf 摘要 我们提出了一种利用变分自动编码器重构概率的异常检测方法.重建概率是一种考虑变量分布变异性的概率度量.重建概率具有一定的理论背景,使其比重建误差更具有原则性和客观性,而重建误差是自…
<转>从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
从K近邻算法、距离度量谈到KD树、SIFT+BBF算法
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知样本的类别,以全部训练样本作为代表点,计算未知样本与所有训练样本的距离,并以最近邻者的类别作为决策未知样本类别的唯一依据.但是,最近邻算法明显是存在缺陷的,比如下面的例子:有一个未知形状(图中绿色的圆点),如何判断它是什么形状? 显然,最近邻算法的缺陷--对噪声数据过于敏感,为了解决这个问题,我们可…
从K近邻算法谈到KD树、SIFT+BBF算法
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
k近邻法的C++实现:kd树
1.k近邻算法的思想 给定一个训练集,对于新的输入实例,在训练集中找到与该实例最近的k个实例,这k个实例中的多数属于某个类,就把该输入实例分为这个类. 因为要找到最近的k个实例,所以计算输入实例与训练集中实例之间的距离是关键! k近邻算法最简单的方法是线性扫描,这时要计算输入实例与每一个训练实例的距离,当训练集很大时,非常耗时,这种方法不可行,为了提高k近邻的搜索效率,常常考虑使用特殊的存储结构存储训练数据,以减少计算距离的次数,具体方法很多,这里介绍实现经典的kd树方法. 2.构造kd树 kd…
kd树 求k近邻 python 代码
之前两篇随笔介绍了kd树的原理,并用python实现了kd树的构建和搜索,具体可以参考 kd树的原理 python kd树 搜索 代码 kd树常与knn算法联系在一起,knn算法通常要搜索k近邻,而不仅仅是最近邻,下面的代码将利用kd树搜索目标点的k个近邻. 首先还是创建一个类,用于保存结点的值,左右子树,以及用于划分左右子树的切分轴 class decisionnode: def __init__(self,value=None,col=None,rb=None,lb=None): sel…
kd树的原理
kd树就是一种对k维空间中的实例点进行存储以便对其进行快速检索的树形数据结构,可以运用在k近邻法中,实现快速k近邻搜索.构造kd树相当于不断地用垂直于坐标轴的超平面将k维空间切分. 假设数据集\(T\)的大小是\(m*n\),即\(T={x_1,x_2,...x_m}\),其中\(x_i=(x_i^{(1)},x_i^{(2)},...,x_i^{(n)})^T,i=1,2,...m\).构建Kd树的过程大致如下. 对所有的数据,以\(x^{(1)}\)为轴,即取\(x_i^{(1…
无监督异常检测之LSTM组成的AE
我本来就是处理时间序列异常检测的,之前用了全连接层以及CNN层组成的AE去拟合原始时间序列,发现效果不佳.当利用LSTM组成AE去拟合时间序列时发现,拟合的效果很好.但是,利用重构误差去做异常检测这条路依旧不通,因为发现异常曲线的拟合效果也很好……算了,这次先不打算做时间序列异常检测了.在这里把“基于LSTM的auto-encoder”的代码分享出来. 代码参考了Jason Brownlee大佬修改的:具体链接我找不到了,当他的博客我还能找到,感兴趣自己翻一翻,记得在LSTM网络那一章 http…