Recommender Systems 基于知识的推荐】的更多相关文章

前两章的协同过滤和就内容的推荐都建立在“大量数据”的基础上,运用概率方法来进行计算和预测.不过,在现实生活中,有些物品,如:汽车.房屋.计算机,用户不会频繁的消费.如何在这种情况下对用户进行推荐? 这种case,在现实生活中很常见的就是在淘宝上面用general的query来搜索一些大宗物品,如:相机.电视.空调.等等.这时候淘宝除了给出一些结果,还会给出一些选项,如:品牌.像素.尺寸,用户每当做了一个选择之后,淘宝会进一步提供更细致的选项,直到用户在淘宝的帮助下一步步用淘宝的方式来精确地描述了…
基于内容的推荐的基本推荐思路是:用户喜欢幻想小说,这本书是幻想小说,则用户有可能喜欢这本小说 两方面要求:(1)知道用户的喜好:(2)知道物品的属性 基于内容的推荐相比协同过滤方法(个人观点):协同过滤用到了大量用户的群体行为特征,两个特点,(1)要大量用户,(2)除了用户的行为之外,不需要其他信息:基于内容的推荐,需要用户和物品的额外信息,如:用户喜好.物品属性等等,但是不需要存储.处理大量的用户数据. 基于内容的推荐和基于知识的推荐没有明确界限,两者区别:前者更侧重于提取物品属性,后者更侧重…
[论文标题]Matrix Factorization Techniques for Recommender Systems(2009,Published by the IEEE Computer Society) [论文作者]Yehuda Koren(Yahoo Research) , Robert Bell and Chris Volinsky( AT&T Labs—Research) [论文链接]Paper(8-pages // Double column) [Info] 此篇论文的作者是n…
以前读了Yehuda Koren和Ma Hao的论文,感觉非常不错,这里分享一下.如果想着具体了解他们近期发的论文,可以去DBLP去看看. Yehuda Koren也是Netflix Prize的冠军队成员,是推荐系统领域的大神级人物. 1.<Matrix Factorization Techniques For Recommender Systems> 2.<Factorization Meets the Neighborhood:a Multifaceted Collaborativ…
原文链接:推荐系统中基于深度学习的混合协同过滤模型 近些年,深度学习在语音识别.图像处理.自然语言处理等领域都取得了很大的突破与成就.相对来说,深度学习在推荐系统领域的研究与应用还处于早期阶段. 携程在深度学习与推荐系统结合的领域也进行了相关的研究与应用,并在国际人工智能顶级会议AAAI 2017上发表了相应的研究成果<A Hybrid Collaborative Filtering Model with Deep Structure for Recommender Systems>,本文将分…
Lecture 16 Recommender Systems 推荐系统 16.1 问题形式化 Problem Formulation 在机器学习领域,对于一些问题存在一些算法, 能试图自动地替你学习到一组优良的特征.通过推荐系统(recommender systems),将领略一小部分特征学习的思想. 假使有 5 部电影,3部爱情片.2部动作片.  4 个用户为其中的部分电影打了分.现在希望构建一个算法,预测每个人可能给没看过的电影打多少分,以此作为推荐的依据. 下面引入一些标记:nu     …
这部分内容来源于Andrew NG老师讲解的 machine learning课程,包括异常检测算法以及推荐系统设计.异常检测是一个非监督学习算法,用于发现系统中的异常数据.推荐系统在生活中也是随处可见,如购物推荐.影视推荐等.课程链接为:https://www.coursera.org/course/ml (一)异常检测(Anomaly Detection) 举个栗子: 我们有一些飞机发动机特征的sample:{x(1),x(2),...,x(m)},对于一个新的样本xtest,那么它是异常数…
推荐系统(Recommender Systems) 问题阐述(Problem Formulation) 将 推荐系统 纳入这门课程来讲有以下两个原因: 第一.仅仅因为它是机器学习中的一个重要的应用.在过去几年,我偶尔访问硅谷不同的技术公司,我常和工作在这儿致力于机器学习应用的人们聊天,我常问他们,最重要的机器学习的应用是什么,或者,你最想改进的机器学习应用有哪些.我最常听到的答案是推荐系统.现在,在硅谷有很多团体试图建立很好的推荐系统.因此,如果你考虑网站像Amazon,或Netflix或Eba…
[论文标题]A review on deep learning for recommender systems: challenges and remedies  (Artificial Intelligence Review,201906) [论文作者]Zeynep Batmaz 1 · Ali Yurekli 1 · Alper Bilge 1 · Cihan Kaleli 1 [论文链接]Paper(37-pages // Single column) ==================…
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…
一.摘要 为了解决协同过滤的稀疏性和冷启动问题,社交网络或项目属性等辅助信息被用来提高推荐性能. 考虑到知识图谱是边信息的来源,为了解决现有的基于嵌入和基于路径的知识图谱感知重构方法的局限性,本文提出了一种端到端框架,它自然地将知识图结合到推荐系统中. 与水上传播的实际涟漪类似,RippleNet通过在知识图谱实体集上传播用户兴趣,从而自主迭代地沿着知识图谱中的链接来扩展用户的潜在兴趣. 因此,由用户的历史点击项激活的多个“涟漪”被叠加以形成用户相对于候选项目的偏好分布,该偏好分布可用于预测最终…
我想站在大神肩膀上...貌似是计算所的一个小伙伴... 总结的很好,看得出来有一定的功底.... 不过对于自己看过了的东西,就不愿意再翻看第二遍了.恰好这本书和项亮那本很像,就直接看这本书了.顺便记记笔记,贴到这里,供更多人参考. 一. 协同过滤的推荐 基本思想:用户在过去有相同的偏好,e.g. 他们浏览或者买过相同的书,那么他们在未来也有相似的偏好. 关键问题: (1)如何发现相似用户 (2)如何衡量相似度 (3)冷启动问题 (4)是否还有别的信息可以利用 二. 基于内容的推荐 推荐的两个目的…
REF: 原文 Recommender Systems: Issues, Challenges, and Research Opportunities Shah Khusro, Zafar Ali and Irfan Ullah Abstract A recommender system is an Information Retrieval technology that improves access and proactively recommends relevant items to…
[论文标题]Improving Implicit Recommender Systems with View Data(IJCAI 18) [论文作者]Jingtao Ding  , Guanghui Yu  , Xiangnan He  , Yuhan Quan ,Yong Li , Tat-Seng Chua , Depeng Jin  , Jiajie Yu  [论文链接]Paper(7-pages // Double column) [摘要] 大多数现有的推荐系统只利用主反馈数据,比如电…
Wide & Deep Learning for Recommender Systems…
对于在线商店,主要关心两方面:1. 提升转化率(将不消费的用户转变为消费用户):2. 提升消费额(已经花钱的人,花更多的强). 对比了6种方法:1. 协同过滤:2. slope one:3. 基于内容的推荐:4. 混合推荐:5. top rating(按照评分排序):6. 按照销量排序.…
1. Welcome 主要讲四部分内容: non-personized systems popularity: 基于流行度或者最大利益化的推荐. 缺点也明显:你可能在特殊地方有些特殊需求, 或者你本来就是大多数人不一样 Association: 找出订单里一起下单的物品的相关性,一般有Aproiri, FP 等算法 collaborative filtering matrix factorization (and its variant like probablistic matrix fact…
PredictionIO+Universal Recommender虽然可以帮助中小企业快速的搭建部署基于用户行为协同过滤的个性化推荐引擎,单纯从引擎层面来看,开发成本近乎于零,但仍然需要一些前提条件.比如说,组织内部最好已经搭建了较稳定的Hadoop,Spark集群,至少要拥有一部分熟悉Spark平台的开发和运维人员,否则会需要技术团队花费很长时间来踩坑,试错. 本文列举了一些PredictionIO+Universal Recommender的使用过程中会遇到的Spark平台相关的异常信息,…
第一部分是学习ID3时候积累的. 一.以前写的基础知识 1.信息:是用来消除不确定性的度量,信息量的大小,由所消除的不确定性的大小来计量(香农). 2.由于不确定性是由随机性引起的,所以用概率来描述和计量:熵entropy:源于热力学,是分子混乱程度的度量. 3.X(离散型随机变量)的熵H(X) 为:H(X)= - ∑x ∈X p (x) log2 p (x),其中,约定0log2 0 = 0,通常单位为bits;一个随机变量的熵越大,它的不确定性就越大,正确估计其值的可能性就越小.越不确定的随…
1, 对Universal Recommender进行pio build成功,但是却提示No engine found Building and delpoying model [INFO] [Engine$] Using command '/home/vagrant/pio_elastic1/PredictionIO-0.11.1-SNAPSHOT/sbt/sbt' at /home/vagrant/workspace/universal-recommender to build. [INFO…
1,PredictionIO如果用直接下载的0.11.0-incubating版本,存在一个HDFS配置相关的BUG 执行pio status命令时会发生如下的错误: -- ::, ERROR org.apache.predictionio.data.storage.Storage$ [main] - Error initializing storage client for source HDFS java.io.IOException: No FileSystem for scheme: h…
这篇论文比较短,正如题目所说,主要还是简单地介绍了一下推荐系统的一些算法以及评估的方法. 推荐系统之前是基于关键字信息的过滤系统,后来发展成为协同过滤系统,解决了两个问题:1.通过人工审核去评价那些具有大量关键字的文档:2.基于人们的品味去过滤一些非文本文件,如音乐. 之后,推荐系统研究领域出现了分叉.一方面,关注实际问题中的商业价值:另一方面,一些机器学习者应用大量技术在推荐系统. 正是这种分叉,推动了推荐系统的发展,许多推荐系统的研究者们都意识到了忽略了两个关键点: 1.在不同类型的推荐系统…
作业文件 machine-learning-ex8 在本次练习,第一节我们将实现异常检测算法,并把它应用到检测网络故障服务器上.在第二部分,我们将使用协同过滤来构建电影推荐系统. 1. 异常检测 在这节练习,我们将实现一个异常检测算法来检测服务器电脑异常行为.特征衡量的是每个服务器的吞吐量和延迟.当服务器运行的时候,我们收集到了m=307个样本.因此就有了一个无标签的数据集.我们假定大多数的样本都是正常的(没有异常的).但是可能有一些异常样本. 我们将使用高斯模型来检测我们数据集的异常样本.我们…
9.5 Predicting Movie Ratings9.5.1 Problem Formulation推荐系统.推荐系统的问题表述:电影推荐.根据用户对已看过电影的打分来推测用户对其未打分的电影将会打什么分.下面对一部电影的打分区间是[0,5]. 做道题: 9.5.2 Content Based Recommendations推荐系统的一种实现:基于内容的推荐. 对于每个用户i训练一个参数向量Θ(i),对于每部电影j训练一个特征向量x(j)(其中默认x0=1,实际上特征抽取是不容易的),那么…
均值归一化可以让算法运行得更好. 现在考虑这样一个情况:一个用户对所有的电影都没有评分,即上图所示 的Eve用户.现在我们要学习特征向量(假设n=2) 以及用户5的向量θ(5),因为用户Eve没有对任何电影打分,所以前面的一项为0,只有后面正则化的项,所以影响θ取值的只有后面的θ的正则化的项.所以要使它最小,即θ的取值为0.所以当我们预测用户5对所有电影的评分的时候,这时的评分都为0.所以我们会预测所有的电影的评分都为0.这样是毫无意义的,因为我们还是没有办法知道我们应该向用户5推荐什么电影(没…
如上图中的predicted ratings矩阵可以分解成X与ΘT的乘积,这个叫做低秩矩阵分解. 我们先学习出product的特征参数向量,在实际应用中这些学习出来的参数向量可能比较难以理解,也很难可视化出来,但是它们是做为区分不同电影的特征 怎么来区分电影i与电影j是否相似呢?就是判断X(i)与X(j)之间的距离是否小来判断.这样在一个用户看了或者买了一部电影后,我们可以给他推荐相似的电影. 总结: 1>用向量化的计算来对所有的用户所有的电影进行评分计算 2>通过学习特征参数,如何找到相关的…
推荐系统很重要的原因:1>它是机器学习的一个重要应用2>对于机器学习来说,特征是非常重要的,对于一些问题,存在一些算法能自动帮我选择一些优良的features,推荐系统就可以帮助我们做这样的事情. 推荐系统的问题描述 使用电影评分系统,用户用1-5分给电影进行评分(允许评分在0-5之间,为了让在数学上的结果更漂亮一些,大多数网站的评分是1-5). 有5部电影,4位用户,如Alice对这5部电影的评分依次为5,5,?,0,0(?表示Alice没有看过这部电影)... 一些符号:nu表示用户的数量…
Recommender system strategies 通过例子简单介绍了一下 collaborative filtering 以及latent model,这两个方法在之前的博客里面介绍过,不累述. Matrix factorization methods  许多成功的LFM都是基于MF的.推荐系统的输入数据需要一定显示反馈信息,例如一个用户给电影的评论.通常包含反馈信息的矩阵都是稀疏的,因为用户不会对所有的电影都作出点评.显示反馈信息并不是一直有效的,推荐系统往往需要使用一些隐式的反馈(…
整理自Andrew Ng的machine learning 课程 week 9. 目录: Problem Formulation(问题的形式) Content Based Recommendations(基于内容的推荐) Collaborative Filtering(协同过滤) Collaborative Filtering Algorithm(协同过滤算法) Vectorization: Low Rank Matrix Factorization(向量化:矩阵低秩分解) Implementa…
本博客是针对Andrew Ng在Coursera上的machine learning课程的学习笔记. 目录 基于内容的推荐(Content-based recommendation) 问题表述 问题范式 协同过滤(collaborative filtering) 问题引入 最优化算法 协同过滤的最优化目标 协同过滤算法 低阶矩阵因式分解(Low Rank Matrix Factorization). 均值标准化(Mean Normalization) 基于内容的推荐(Content-based…