【题解】HAOI2012高速公路】的更多相关文章

2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 608  Solved: 199[Submit][Status] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行…
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1621  Solved: 627[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为…
对于询问[L, R], 我们直接考虑每个p(L≤p≤R)的贡献,可以得到 然后化简一下得到 这样就可以很方便地用线段树, 维护一个p, p*vp, p*(p+1)*vp就可以了 -------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace std;  …
2752: [HAOI2012]高速公路(road) Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 1219  Solved: 446[Submit][Status][Discuss] Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1…
P2221 [HAOI2012]高速公路 显然答案为 $\dfrac{\sum_{i=l}^r\sum_{j=l}^{r}dis[i][j]}{C_{r-l+1}^2}$ 下面倒是挺好算,组合数瞎搞 上面咋算呢 先考虑每条边被算上的次数$ans = \sum_{i=l}^{r}a[i]*(r-i+1)(i-l+1)$ 我们把它拆开再合并瞎搞,按变量$i$的次数分项 蓝后化出来这个式子: $ans = (r - l- r*l+1) *S_{1}+ (l+r)*S_{2}-S_{3}$ $S_{1}…
[Luogu 2221] HAOI2012 高速公路 比较容易看出的线段树题目. 由于等概率,期望便转化为 子集元素和/子集个数. 每一段l..r中,子集元素和为: \(\sum w_{i}(i-l+1)(r-i)\) //\((i-l+1)(r-i)\)是每个数用到的次数 \(=\sum w_{i}((r-lr)+(l+r-1)i-i^{2})\) \(=(r-lr)\sum w_{i}+(l+r-1)\sum i\times w_{i}-\sum i^{2}\times w_{i}\) 由此…
[HAOI2012]高速公路(road) Description Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站.Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要收取Vi的费用.高速路刚建成时所有的路段都是免费的.政府部门根据实际情况,会不定期地对连续路段的收费标准进行调整,根据政策涨价或降价.无聊的…
http://www.lydsy.com/JudgeOnline/problem.php?id=2752 https://www.luogu.org/problemnew/show/P2221#sub Y901高速公路是一条重要的交通纽带,政府部门建设初期的投入以及使用期间的养护费用都不低,因此政府在这条高速公路上设立了许多收费站. Y901高速公路是一条由N-1段路以及N个收费站组成的东西向的链,我们按照由西向东的顺序将收费站依次编号为1~N,从收费站i行驶到i+1(或从i+1行驶到i)需要收…
原题传送门 这道题还算简单 我们要求的期望值: \[\frac{\sum_{i=l}^r\sum_{j=l}^rdis[i][j]}{C_{r-l+1}^{2}}\] 当然是上下两部分分别求,下面肥肠容易 ,问题在于如何求上面的 我们珂以把上面的换一个形式(枚举每段路会走几次): \[\sum_{i=l}^ra[i]*(r-i+1)*(i-l+1)\] 化简一下这个式子: \[(r-l+1-r*l)*sum1+(r+l)*sum2-sum3\] 其中\(sum1=\sum_{i=l}^ra[i]…
一节政治课的结果……推式子+推式子+推式子…… 首先注意到一个区间里面,选择(x, y)和(y, x)的费用是一样的.所以我们把这两种情况合为一种,那么现在询问的区间为(l, r),则一共的情况就有 1 / (k + 1)*(k)种 (k = r - l + 1).所以我们只需要求出区间内所有的子集之和 * 2 / (k + 1) * k(每种情况有两种).但这样复杂度还是太高了,我们考虑继续推下式子. 顺着一个比较常见的思路想:分离出每一段路对于答案的贡献再累加起来.那么我们的ans = Vx…