求方程:的解个数 分析:设,那么上述方程解的个数就与同余方程组:的解等价. 设同于方程的解分别是:,那么原方程的解的个数就是 所以现在的关键问题是求方程:的解个数. 这个方程我们需要分3类讨论: 第一种情况: 对于这种情况,如果方程的某个解设为,那么一定有,可以得到,即 所以方程的解个数就是:,也就是 第二种情况: 这样也就是说p|B,设,,本方程有解的充要条件是A|t, 那么我们设t=kA, 所以进一步有:,因为,这样又转化为第三种情况了. 第三种情况: 那么我们要求指标:求指标的话又要求原根…
好久没写博客了,因为感觉时间比较紧,另一方面没有心思,做的题目比较浅也是另一方面. 热身赛第二场被血虐了好不好,于是决定看看数位DP吧. 进入正题: 如题是一道经(简)典(单)的数位dp. 第一步,对于数K^n-1这种形式的数,位数为n,它的各个位上,每个数0~K-1出现过的次数是一样的. 于是对于数B=K^n-1,有f(B)=(B+1)*n*(0+1+2+...+K-1)/K=(B+1)*n*(K-1)/2; 程序为: LL sum1(int pre,int n,int k) { LL ret…
poj 1523Tarjan算法的含义——求取割点可以分出的连通分量的个数 题目大意:如题目所示 给你一些关系图——连通图,想要问你有没有个节点,损坏后,可以生成几个互相独立的网络(也就是连通分量),所以我们利用tarjan算法,求取一个联通分量的点,记录次数,因为访问几次,就代表这个点的不同方向上的联通分量的个数,记录下来,最后输出即可 至于根节点的选取,选谁都没什么问题的,我默认选的节点1 嗯,没什么了,tarjan算法到这算是入门啦 #include <iostream> #includ…
求N的阶乘N!中末尾0的个数 有道问题是这样的:给定一个正整数N,那么N的阶乘N!末尾中有多少个0呢?例如:N=10,N=3628800,则N!的末尾有两个0:直接上干货,算法思想如下:对于任意一个正整数N!,都可以化为N!= (2^X)*(3^Y)* (5^Z)......的形式,要求得末尾0的个数只需求得min(X, Z)即可,由于是求N!,则X >= Z; 即公约数5出现的频率小于等于2出现的频率,即Z=min(X, Z),即出现0的个数等于公约数5出现的次数: 方法一: #include…
求解形如ax+by == n (a,b已知)的方程的非负整数解个数时,需要用到扩展欧几里得定理,先求出最小的x的值,然后通过处理剩下的区间长度即可得到答案. 放出模板: ll gcd(ll a, ll b) { return b ? gcd(b, a%b) : a; } ll lcm(ll a, ll b) { return a / gcd(a,b) * b; } ll extend_gcd(ll a,ll b,ll&x,ll&y) { if(!b) { x = ; y = ; retur…
Description A substring of a string T is defined as: T( i, k)= TiTi+1... Ti+k-1, 1≤ i≤ i+k-1≤| T|. Given two strings A, B and one integer K, we define S, a set of triples (i, j, k): S = {( i, j, k) | k≥ K, A( i, k)= B( j, k)}. You are to give the val…
不理解Baby Step Giant Step算法,请戳: http://www.cnblogs.com/chenxiwenruo/p/3554885.html #include <iostream> #include <stdio.h> #include <math.h> #include <string.h> #define SIZE 99991 /* POJ 3243 AC 求解同余方程: A^x=B(mod C) */ using namespace…
青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总…
Widget Factory Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 5173   Accepted: 1790 Description The widget factory produces several different kinds of widgets. Each widget is carefully built by a skilled widgeteer. The time required to…
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1123.html 题目传送门 - 51Nod1123 题意 $T$ 组数据. 给定 $A,B,C$,求出使得 $x^A \equiv C \pmod B$ 的所有 $x$,保证解的个数不超过 $\sqrt B$ . $T\leq 100,1\leq A,B,C \leq 10^9$ 题解 先记一下写这一题的感受: 1. 写的过程中代码长度峰值达到过 300 行,好久没写码农题了,感到自己码力大减.…