深度语义匹配模型-DSSM 及其变种】的更多相关文章

转自:http://ju.outofmemory.cn/entry/316660 感谢分享~ DSSM这篇paper发表在cikm2013,短小但是精炼,值得记录一下 ps:后来跟了几篇dssm的paper,一并记录在这里 DSSM DSSM的结构 DSSM 最大的卖点在检索场景下 使用点击数据来训练语义层次的匹配,简单的来说,传统检索场景下的匹配主要有: 字面匹配: TFIDF . BM25 等 使用 LSA 类模型进行语义匹配,但是效果不好 而DSSM训练出来之后,检索场景下用户输入quer…
导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下Query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语义相似度,这里主要体现在两个方面:召回和排序. 在召回时,传统的文本相似性如 BM25,无法有效发现语义类 Query-Doc 结果…
来源商业新知网,原标题:让聊天机器人完美回复 | 基于PaddlePaddle的语义匹配模型DAM 语义匹配 语义匹配是NLP的一项重要应用.无论是问答系统.对话系统还是智能客服,都可以认为是问题和回复之间的语义匹配问题.这些NLP的应用,通常以聊天机器人的形式呈现在人们面前,目标是通过对话的上下文信息,去匹配最佳的回复. 因而,让聊天机器人完美回复问题,是语义匹配的关键目标.作为国内乃至国际上领先的NLP技术团队,百度在NLP领域积极创新.锐意进取,在聊天机器人的回复选择这个关键NLP任务上,…
从零开始搭建FAQ引擎--深度语义匹配…
深度树匹配模型(TDM) 算法介绍 Tree-based Deep Match(TDM)是由阿里妈妈精准定向广告算法团队自主研发,基于深度学习上的大规模(千万级+)推荐系统算法框架.在大规模推荐系统的实践中,基于商品的协同过滤算法(Item-CF)是应用较为广泛的,而受到图像检索的启发,基于内积模型的向量检索算法也崭露头角,这些推荐算法产生了一定的效果,但因为受限于算法模型本身的理论限制,推荐的最终结果并不十分理想.近些年,深度学习技术逐渐兴起,在包括如图像.自然语言处理.语音等领域的应用产生了…
细粒度识别一般需要模型识别非常精细的子类别,它基本上就是同时使用图像全局信息和局部信息的分类任务.在本论文中,研究者们提出了一种新型层次语义框架,其自顶向下地由全局图像关注局部特征或更具判别性的区域. 人类在识别物体类别时,往往不仅仅根据其外观信息,还依赖于在日常生活以及专业学习过程中获取的先验知识.如何有效利用这些先验知识引导和约束网络学习是目前一个重要的研究难点.针对于精细化物体识别,其类别可以按照不同程度进行概念抽象,并形成了层次化的分类结构.这种结构是层级间丰富语义知识的集中体现,如层级…
这是一篇被ICLR 2019 接收的论文.论文讨论了如何利用场景先验知识 (scene priors)来定位一个新场景(novel scene)中未曾见过的物体(unseen objects).举例来说,在「厨房」这一场景中,有一张图片显示「苹果」在冰箱的储物架上,同为水果的物体,如「橙子」,会出现在场景的哪个位置呢?论文提出了用基于强化学习的方法来定位「橙子」. 论文:VISUAL SEMANTIC NAVIGATION USING SCENE PRIORS 论文作者:Wei Yang , X…
最近给某大学网站制作一个功能,需要给全校所有的学生提供就业单位发布职位的自动匹配,学生登陆就业网,就可以查看适合自己的职位,进而可以在线投递. 全校有几万名学生,注册企业发布的职位也有上万,如何在很短的时间内(不影响学生访问网站),通过建立好的匹配模型迅速的对学生——职位进行匹配? 建模篇 我以前给银行开发过房地产自动估价软件,按照标准做法是用欧几里得贴近算法或者海明贴近度,但是那种算法太复杂,属于应用数学的范畴,需要依靠精准的建模.我们就业办的老师是在实战上打拼的,没有高深的理论基础,所以建模…
参考资料 [搜狗语义匹配技术前沿]https://www.jiqizhixin.com/articles/2018-10-25-16?from=synced&keyword=%E6%90%9C%E7%8B%97%E8%AF%AD%E4%B9%89%E5%8C%B9%E9%85%8D…
词义消歧,句子.篇章语义理解基础,必须解决.语言都有大量多种含义词汇.词义消歧,可通过机器学习方法解决.词义消歧有监督机器学习分类算法,判断词义所属分类.词义消歧无监督机器学习聚类算法,把词义聚成多类,每一类一种含义. 有监督词义消歧方法.基于互信息词义消歧方法,两种语言对照,基于大量中英文对照语料库训练模型可词义消歧.来源信息论,一个随机变量中包含另一个随机变量信息量(英文信息中包含中文信息信息量),假设两个随机变量X.Y的概率分别是p(x), p(y),联合分布概率是p(x,y),互信息计算…