算法说明 计数排序属于线性排序,它的时间复杂度远远大于常用的比较排序.(计数是O(n),而比较排序不会超过O(nlog2nJ)). 其实计数排序大部分很好理解的,唯一理解起来很蛋疼的是为了保证算法稳定性而做的数据累加,大家听我说说就知道了: 1.首先,先取出要排序数组的最大值,假如我们的数组是int[] arrayData = { 2, 4, 1, 5, 6, 7, 4, 65, 42 };,那么最大值就是65.(代码17-21行就是在查找最大值) 2.然后创建一个计数数组,计数数组的长度就是我…
算法说明 锦标赛排序是选择排序的一种. 实际上堆排序是锦标赛排序的优化版本,它们时间复杂度都是O(nlog2n),不同之处是堆排序的空间复杂度(O(1))远远低于锦标赛的空间复杂度(O(2n-1)) 堆排序是基于二叉树的, 所以锦标赛排序也是基于二叉树的,并且是完美二叉树. 我尝试用最通俗的方法来做一下解释,如果我说的不大清楚,建议大家直接看下边的代码啦. 1.例如我们要对int[] arrayData = { 5, 9, 6, 7, 4, 1, 2, 3, 8 };进行升序排序 2.我们根据锦…
算法说明 圈排序是选择排序的一种.其实感觉和快排有一点点像,但根本不同之处就是丫的移动的是当前数字,而不像快排一样移动的是其它数字.根据比较移动到不需要移动时,就代表一圈结束.最终要进行n-1圈的比较.   这个比较说起来比较抽象,所以举例子是最好的方法,这里例子使用的是这里的,望见谅: 待排数组[ 6 2 4 1 5 9 ] 第一步,将6取出来,计算出有4个数字比6小,将6放入索引4,同时原索引4位置的数字5出列 排序之前[ 0 2 4 1 5 9 ] 6 排序之后[ 0 2 4 1 6 9…
算法说明 Bogo排序是交换排序的一种,它是一种随机排序,也是一种没有使用意义的排序,同样也是一种我觉得很好玩的排序. 举个形象的例子,你手头有一副乱序的扑克牌,然后往天上不停的扔,那么有一定机率会变成有序的. 哈哈,就是这样. 看一下代码大家就知道了. 代码 使用的是java package hark.sort.exchangesort; import java.util.Random; /* * Bogo排序 */ public class BogoSort { public static…
---恢复内容开始--- 算法说明 珠排序是分布排序的一种. 说实在的,这个排序看起来特别的巧妙,同时也特别好理解,不过不太容易写成代码,哈哈. 这里其实分析的特别好了,我就不画蛇添足啦.  大家看一下这个分析,特别特别简单的. 然后我对于下面的代码做一下描述: 1.找到数组的最大值(20-23行代码) 2.创建珠排序的容器,并且进行初始化(28-34行代码) 3.进行排序(39-44行代码),这里是珠排序的核心,也不太好解释,所以还是举例子啦. 例如排序的数组是int[] arr = { 2,…
算法说明梳排序是交换排序的一种,它其实也是改自冒泡排序,不同之处是冒泡排序的比较步长恒定为1,而梳排序的比较步长是变化的. 步长需要循环以数组长度除以1.3,到最后大于等于1即可. 光说可能比较抽象,所以实例举个例子可能会好些,这里使用的例子从这里转载过来的 假设待数组[8 4 3 7 6 5 2 1] 待排数组长度为8,而8÷1.3=6,则比较8和2,4和1,并做交换 [8 4 3 7 6 5 2 1] [8 4 3 7 6 5 2 1] 交换后的结果为 [2 1 3 7 6 5 8 4] 第…
算法说明 奇偶排序又叫奇偶换位排序,砖排序.它是一种交换排序,也是冒泡的一个变种 顾名思义,奇偶排序,其实就是先循环奇数位,然后将奇数位与偶数位比较计算. 然后再循环偶数位,再和奇数位比较运算.看一下代码大家就明白了. 据wiki所述,这种算法是一种并行算法,个人对这块现在不太理解,没明白这块所谓的并行是什么意思,现在只是完成了一个单机版,将来如果明白了再过来进行补充啦. 代码 使用的是java package hark.sort.exchangesort; /* * 奇偶排序 */ publi…
算法说明 鸡尾酒排序又叫定向冒泡排序,鸡尾酒搅拌排序,搅拌排序,涟漪排序,回来排序,快乐小时排序. 鸡尾酒排序是交换排序的一种,它是冒泡排序的一个轻微的变种.冒泡是从低向高比较排序,鸡尾酒从低向高,从高向低交换着进行排序.大家看一下代码就知道了. 某些特殊有序数组情况下,鸡尾酒排序是效率略好于冒泡排序,例如: int[] arrayData = { 2, 3, 4, 5, 6, 7, 8, 9, 1 }; 鸡尾酒排序只排序一次就能出结果,而冒泡排序就需要8次才能出结果. 代码 使用的是java…
算法说明 假设煎锅里边有N个煎饼摞在了一起,它们大小不一并且顺序不一致,我们需要通过拿铲子将它们不停的翻个,进行排序,最终得到一个底下是大的煎饼,上边是小的煎饼的序列.这个排序的过程就是煎饼排序. 这个算法有两种解,一种是普通解,一种是最优解. 普通论证: 例如你的初始煎饼顺序是[2,4,3,1] 然后2与4交换位置,然后4与1交换位置,得出[1,3,2,4]. 然后3与1交换位置,接着3与2交换位置,得出[2,1,3,4]. 最后2与1交换位置,得出结果[1,2,3,4] 通过普通解的过程,我…
算法说明 图书馆排序是插入排序的变种,典型的以空间换时间的一种方法.我个人感觉这种思路可以学习借鉴,但直接使用的场景应该不大. 我们知道,真正的插入排序通常往前边插入元素后,我们要把后边所有的元素后移.而图书馆排序的思路就是将每个元素后边都预留N个空间(例如预留10个元素空间),这样往某个元素前插入时,在预留空间足够的前题下,只会移动少少几个的元素. 代码 因为4月要考试,所以代码暂不写,以后有时间时补上 参考 http://www.cnblogs.com/kkun/archive/2011/1…