本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了.官方教程看这里:https://www.tensorflow.org/get_started/os_setup 如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tenso…
本资料是在Ubuntu14.0.4版本下进行,用来进行图像处理,所以只介绍关于图像处理部分的内容,并且默认TensorFlow已经配置好,如果没有配置好,请参考官方文档配置安装,推荐用pip安装.关于配置TensorFlow,官方已经说得很详细了,我这里就不啰嗦了.官方教程看这里:https://www.tensorflow.org/get_started/os_setup 如果安装了GPU版本的TensorFlow,还需要配置Cuda,关于Cuda安装看这里:https://www.tenso…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练, 1 万张用于测试.数据集被分成了5 个训练的 batches 和 1 个测试的 batch.每个 batch 里的图片都是随机排列的.官网上提供了三个版本的下载链接,分别是 Python 版本的,Mat…
上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制. 变量共享主要涉及到两个函数: tf.get_variab…
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization) 3. 数据的读取: 4. 线程和队列: 5. 分布式的TensorFlow: 6. 增加新的Ops: 7. 自定义数据读取: 由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究.学习过程中深感官方…
TensorFlow 的 How-Tos,讲解了这么几点: 1. 变量:创建,初始化,保存,加载,共享: 2. TensorFlow 的可视化学习,(r0.12版本后,加入了Embedding Visualization) 3. 数据的读取: 4. 线程和队列: 5. 分布式的TensorFlow: 6. 增加新的Ops: 7. 自定义数据读取: 由于各种原因,本人只看了前5个部分,剩下的2个部分还没来得及看,时间紧任务重,所以匆匆发车了,以后如果有用到的地方,再回过头来研究.学习过程中深感官方…
圣诞节玩的有点嗨,差点忘记更新.祝大家昨天圣诞节快乐,再过几天元旦节快乐. 来继续学习,在/home/your_name/TensorFlow/cifar10/ 下新建文件夹cifar10_train,用来保存训练时的日志logs,继续在/home/your_name/TensorFlow/cifar10/ cifar10.py中输入如下代码: def train(): # global_step global_step = tf.Variable(0, name = 'global_step'…
上次说到了 TensorFlow 从文件读取数据,这次我们来谈一谈变量共享的问题. 为什么要共享变量?我举个简单的例子:例如,当我们研究生成对抗网络GAN的时候,判别器的任务是,如果接收到的是生成器生成的图像,判别器就尝试优化自己的网络结构来使自己输出0,如果接收到的是来自真实数据的图像,那么就尝试优化自己的网络结构来使自己输出1.也就是说,生成图像和真实图像经过判别器的时候,要共享同一套变量,所以TensorFlow引入了变量共享机制. 变量共享主要涉及到两个函数: tf.get_variab…
有了数据,有了网络结构,下面我们就来写 cifar10 的代码. 首先处理输入,在 /home/your_name/TensorFlow/cifar10/ 下建立 cifar10_input.py,输入如下代码: from __future__ import absolute_import # 绝对导入 from __future__ import division # 精确除法,/是精确除,//是取整除 from __future__ import print_function # 打印函数…
前面基本上把 TensorFlow 的在图像处理上的基础知识介绍完了,下面我们就用 TensorFlow 来搭建一个分类 cifar10 的神经网络. 首先准备数据: cifar10 的数据集共有 6 万幅 32 * 32 大小的图片,分为 10 类,每类 6000 张,其中 5 万张用于训练, 1 万张用于测试.数据集被分成了5 个训练的 batches 和 1 个测试的 batch.每个 batch 里的图片都是随机排列的.官网上提供了三个版本的下载链接,分别是 Python 版本的,Mat…
#TF:Tensorflow定义变量+常量,实现输出计数功能 import tensorflow as tf state = tf.Variable(0, name='Parameter_name_counter') #print(state.name) one = tf.constant(1) new_value = tf.add(state, one) update = tf.assign(state, new_value) init = tf.global_variables_initia…
1082 AlvinZH的学霸养成记VI 思路 难题,凸包. 分析问题,平面上给出两类点,问能否用一条直线将二者分离. 首先应该联想到这是一个凸包问题,分别计算两类点的凸包,如果存在符合题意的直线,那么这两个凸包(凸多边形)一定是不相交的. 计算凸包一般有两种方法,Graham扫描法和Jarvis步进法. Graham扫描法比较简单,好理解,书中也有伪代码.先找到最左下点P0,对剩下的点相对P0进行极角排序.然后依次进栈判断.当算法终止时,栈中从底部到顶部,依次是按逆时针方向排列的凸包中的点(有…
1081 AlvinZH的学霸养成记V 思路 中等题,计算几何. 这是一个排序问题,按极角排序.可以转化为叉积的应用,对于点A和B,通过叉积可以判断角度大小,共线时再判断距离. 叉积的应用.OA × OB = x1y2 - x2y1. OA × OB > 0:OA在OB的顺时针180°内: OA × OB = 0:三点共线,方向不一定相同: OA × OB < 0:OA在OB的逆时针180°内. 分析 注意数据范围,建议使用double.long long还是少用些好,真的. 参考代码 #in…
1032 AlvinZH的学霸养成记II 思路 中等题,贪心. 所有课程按照DDL的大小来排序. 维护一个当前时间curTime,初始为0. 遍历课程,curTime加上此课程持续时间d,如果这时curTime大于此课程DDL,表示无法学习此课程,但是我们不减去此课程,而是减去用时最长的那门课程(优先队列队首,课时最长). 贪心: 假设当前课程为B,被替换课程为A,则有A.d≥B.d,A.e≤B.e.既然curTime+A.d≤A.e,那么curTime+B.d≤B.e绝对成立,保证了B的合法性…
1039 AlvinZH的学霸养成记IV 思路 难题,最大二分图匹配. 难点在于如何转化问题,n对n,一个只能攻击一个,判断是否存在一种攻击方案我方不死团灭对方.可以想到把所有随从看作点,对于可攻击的两个随从间连上边,这样就把问题转化为图了. 需要注意的是属性值的转化:免疫可看做生命值无限,剧毒可看做攻击力无限.(需要一点小小的机智) 图建好了,接下来怎么办呢?假设存在一种方案满足题意,那就是每个我方随从都可以找到敌方随从攻击,由于要团灭,只能存在一对一的情况,不存在多对一或一对多.如何表达这个…
850 AlvinZH的学霸养成记III 思路 难题.概率DP. 第一种思考方式:直接DP dp[i]:从已经有i个学霸到所有人变成学霸的期望. 那么答案为dp[1],需要从后往前逆推.对于某一天,有可能会增加一个学霸or不增加. ①增加:\((dp[i+1] + 1) * P\) ②不增加:\((dp[i] + 1) * (1-P)\) 其中,\(P = i * (n - i) * p / (C(n,2))\),C(n,2) = (n - 1) * n / 2.其含义是:n个人中选出一非学霸一…
referrence: 莫烦视频 先介绍几个函数 1.tf.cast() 英文解释: 也就是说cast的直译,类似于映射,映射到一个你制定的类型. 2.tf.argmax 原型: 含义:返回最大值所在的坐标.(谁给翻译下最后一句???) ps:谁给解释下axis最后一句话? 例子: 3.tf.reduce_mean() 原型: 含义:一句话来说就是对制定的reduction_index进行均值计算. 注意,reduction_indices为0时,是算的不同的[]的同一个位置上的均值 为1是是算…
时间规定: 2018.12.07-2018.02.15 能力养成: linux, shell python, c++(会多少算多少) tensorflow, keras, pytorch(tf优先) CNN, RNN(LSTM), BRNN, Seq2Seq, RL, Attention, fastText, TextCNN, TextRNN, TextRNN+Attention, TextRCNN(CNN+RNN) LR, SVM, RF, NB, CRF, LDA, XGB等 分词,新词发现…
1/先解释下CNN的过程: 首先对一张图片进行卷积,可以有多个卷积核,卷积过后,对每一卷积核对应一个chanel,也就是一张新的图片,图片尺寸可能会变小也可能会不变,然后对这个chanel进行一些pooling操作. 最后pooling输出完成,这个算作一个卷积层. 最后对最后一个pooling结果进行一个简单的MLP的判别其就好了 2.代码分步: 2.1 W and bias:注意不要将一些W设为0,一定要注意,这个会在后面一些地方讲到 #注意不要将一些W设为0,一定要注意,这个会在后面一些地…
参考:莫烦. 主要是运用的MLP.另外这里用到的是批训练: 这个代码很简单,跟上次的基本没有什么区别. 这里的lossfunction用到的是是交叉熵cross_entropy.可能网上很多形式跟这里的并不一样. 这里一段时间会另开一个栏.专门去写一些机器学习上的一些理论知识. 这里代码主要写一下如何计算accuracy: def getAccuracy(v_xs,v_ys): global y_pre y_v = sess.run(y_pre,feed_dict={x:v_xs}) corre…
首先介绍几个用法: with tf.name_scope(name = "inputs"): 这个是用于区分区域的.如,train,inputs等. xs = tf.placeholder(tf.float32,[None,1],name = "x_input") name用于对节点的命名. merged = tf.summary.merge_all() 注:这里很多代码可能跟莫烦老师的代码并不一样,主要是由于版本变迁,tensorflow很多函数改变. 这一步很重…
内容总结与莫烦的视频. 这里多层感知器代码写的是一个简单的三层神经网络,输入层,隐藏层,输出层.代码的目的是你和一个二次曲线.同时,为了保证数据的自然,添加了mean为0,steddv为0.05的噪声. 添加层代码: def addLayer(inputs,inSize,outSize,activ_func = None):#insize outsize表示输如输出层的大小,inputs是输入.activ_func是激活函数,输出层没有激活函数.默认激活函数为空 with tf.name_sco…
学习参考周莫烦的视频. Variable:主要是用于训练变量之类的.比如我们经常使用的网络权重,偏置. 值得注意的是Variable在声明是必须赋予初始值.在训练过程中该值很可能会进行不断的加减操作变化. placeholder:也是用于存储数据,但是主要用于feed_dict的配合,接收输入数据用于训练模型等.placeholder值在训练过程中会不断地被赋予新的值,用于批训练,基本上其值是不会轻易进行加减操作. placeholder在命名时是不会需要赋予值得,其被赋予值得时间实在feed_…
转自:http://www.cnblogs.com/likethanlove/p/6547405.html 在tensorflow的使用中,经常会使用tf.reduce_mean,tf.reduce_sum等函数,在函数中,有一个reduction_indices参数,表示函数的处理维度,直接上图,一目了然: 需要注意的一点,在很多的时候,我们看到别人的代码中并没有reduction_indices这个参数,此时该参数取默认值None,将把input_tensor降到0维,也就是一个数. 值得提…
import os os.environ[' import tensorflow as tf import numpy as np x_data = np.random.rand(100).astype(np.float32) y_data = x_data*0.1 + 0.3 Weights = tf.Variable(tf.random_uniform([1], -1.0, 1.0)) biases = tf.Variable(tf.zeros([1])) y = Weights*x_dat…
tensorflow中有很多在维度上的操作,本例以常用的tf.reduce_sum进行说明.官方给的api reduce_sum( input_tensor, axis=None, keep_dims=False, name=None, reduction_indices=None ) input_tensor:表示输入 axis:表示在那个维度进行sum操作. keep_dims:表示是否保留原始数据的维度,False相当于执行完后原始数据就会少一个维度. reduction_indices:…
深度学习乃至人工智能正逐渐在FinTech领域发挥巨大的作用,其应用包括自动报告生成.金融智能搜索.量化交易和智能投顾.而TensorFlow为金融业方便地使用深度学习提供了可能.<TensorFlow实战>讲述了TensorFlow的基础原理,TF和其他框架的异同,并用具体的代码完整地实现了各种类型的深度神经网络.介绍了通过TensorFlow实现各类神经网络的案例,非常适合初学者快速入门. 学习参考: <TensorFlow实战>中文版PDF,313页,带书签和目录.配套源代码…
CNN中最重要的就是参数了,包括W,b. 我们训练CNN的最终目的就是得到最好的参数,使得目标函数取得最小值.参数的初始化也同样重要,因此微调受到很多人的重视,那么tf提供了哪些初始化参数的方法呢,我们能不能自己进行初始化呢? 所有的初始化方法都定义在tensorflow/python/ops/init_ops.py 1.tf.constant_initializer() 也可以简写为tf.Constant() 初始化为常数,这个非常有用,通常偏置项就是用它初始化的. 由它衍生出的两个初始化方法…