转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47606159 继上一篇中已经介绍了SIFT原理与C源代码剖析,最后得到了一系列特征点,每一个特征点相应一个128维向量.假如如今有两副图片都已经提取到特征点,如今要做的就是匹配上相似的特征点. 相似性查询有两种基本方式:1.范围查询:即给点查询点和查询阈值,从数据集中找出全部与查询点距离小于阈值的点. 2.K近邻查询:给点查询点及正整数K,从数据集中找到与查询点近期的K个数据…
转载~Merkle Tree(默克尔树)算法解析 /*最近在看Ethereum,其中一个重要的概念是Merkle Tree,以前从来没有听说过,所以查了些资料,学习了Merkle Tree的知识,因为接触时间不长,对Merkle Tree的理解也不是很深入,如果有不对的地方,希望各位大神指正*/ Merkle Tree概念 Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节点是…
Merkle Tree概念 Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节点是其对应子节点串联字符串的hash.[1] 1.Hash Hash是一个把任意长度的数据映射成固定长度数据的函数[2].例如,对于数据完整性校验,最简单的方法是对整个数据做Hash运算得到固定长度的Hash值,然后把得到的Hash值公布在网上,这样用户下载到数据之后,对数据再次进行Hash运算,比较…
Merkle Tree概念  Merkle Tree,通常也被称作Hash Tree,顾名思义,就是存储hash值的一棵树.Merkle树的叶子是数据块(例如,文件或者文件的集合)的hash值.非叶节点是其对应子节点串联字符串的hash.[1] 1.Hash Hash是一个把任意长度的数据映射成固定长度数据的函数[2].例如,对于数据完整性校验,最简单的方法是对整个数据做Hash运算得到固定长度的Hash值,然后把得到的Hash值公布在网上,这样用户下载到数据之后,对数据再次进行Hash运算,比…
相关: KD树+BBF算法解析 SURF原理与源代码解析 SIFT的原理已经有非常多大牛的博客上做了解析,本文重点将以Rob Hess等人用C实现的代码做解析,结合代码SIFT原理会更easy理解.一些难理解点的用了☆标注. 欢迎大家批评指正. 转载请注明出处:http://blog.csdn.net/luoshixian099/article/details/47377611 SIFT(Scale-invariant feature transform)即尺度不变特征转换,提取的局部特征点具有…
平台:win10 x64 +VS 2015专业版 +opencv-2.4.11 + gtk_-bundle_2.24.10_win32 主要参考:1.代码:RobHess的SIFT源码:SIFT+KD树+BBF算法+RANSAC算法 2.书:王永明 王贵锦 <图像局部不变性特征与描述> RobHess的SIFT源码中的几个文件说明? RobHess的SIFT源码分析: (1) minpq.h和minpq.c文件这两个文件中实现了最小优先级队列(Minimizing Priority Queue…
转自 http://blog.csdn.net/v_july_v/article/details/8203674 ,感谢july的辛勤劳动 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:http://weibo.com/1580904460/z1PosdcKj:2.神经网络:http://weibo.com/1580904460/yBmhfrOGl:3.编程艺术第28章:http://weibo.com/1580904460/z4ZGFiDcY.你看到,blog内…
转载自:http://blog.csdn.net/v_july_v/article/details/8203674/ 从K近邻算法.距离度量谈到KD树.SIFT+BBF算法 前言 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时…
转自 http://blog.csdn.net/likika2012/article/details/39619687 前两日,在微博上说:“到今天为止,我至少亏欠了3篇文章待写:1.KD树:2.神经网络:3.编程艺术第28章.你看到,blog内的文章与你于别处所见的任何都不同.于是,等啊等,等一台电脑,只好等待..”.得益于田,借了我一台电脑(借他电脑的时候,我连表示感谢,他说“能找到工作全靠你的博客,这点儿小忙还说,不地道”,有的时候,稍许感受到受人信任也是一种压力,愿我不辜负大家对我的信任…
Kd-Tree,即K-dimensional tree,是一棵二叉树,树中存储的是一些K维数据.在一个K维数据集合上构建一棵Kd-Tree代表了对该K维数据集合构成的K维空间的一个划分,即树中的每个结点就对应了一个K维的超矩形区域(Hyperrectangle). 在介绍Kd-tree的相关算法前,我们先回顾一下二叉查找树(Binary Search Tree)的相关概念和算法.k=1就是BST! 例如,图1中是一棵二叉查找树,其满足BST的性质. 图1 二叉查找树(来源:Wiki) KD树的构…