spark作业运行过程之--DAGScheduler】的更多相关文章

DAGScheduler--stage划分和创建以及stage的提交 本篇,我会从一次spark作业的运行为切入点,将spark运行过程中涉及到的各个步骤,包括DAG图的划分,任务集的创建,资源分配,任务序列化,任务分发到各个executor,任务执行,任务结果回传driver等等各个环节串联起来,以整个任务运行的调用链为线索,将spark-core中的各个基础设施联系起来,这样我们就能对spark的各个基础设施模块的作用有一个整体的认识,然后有了对spark整体框架的印象,再对其中的各个模块各…
目录 相关概念 概述 源码解析 作业提交 划分&提交调度阶段 提交任务 执行任务 结果处理 Reference 本文梳理一下Spark作业执行的流程. Spark作业和任务调度系统是其核心,通过内部RDD的依赖DAG,使得模块之间的调用和处理变得游刃有余. 相关概念 Job(作业):通过行动操作生成的一个或多个调度阶段 Stage:根据依赖关系划分的多个任务集,称为调度阶段,也叫做TaskSet(任务集).划分Stage是由DAGScheduler进行的,任务阶段分为Shuffle Map St…
调优概述 在开发完Spark作业之后,就该为作业配置合适的资源了.Spark的资源参数,基本都可以在spark-submit命令中作为参数设置.很多Spark初学者,通常不知道该设置哪些必要的参数,以及如何设置这些参数,最后就只能胡乱设置,甚至压根儿不设置.资源参数设置的不合理,可能会导致没有充分利用集群资源,作业运行会极其缓慢:或者设置的资源过大,队列没有足够的资源来提供,进而导致各种异常.总之,无论是哪种情况,都会导致Spark作业的运行效率低下,甚至根本无法运行.因此我们必须对Spark作…
作业执行 上一章讲了RDD的转换,但是没讲作业的运行,它和Driver Program的关系是啥,和RDD的关系是啥? 官方给的例子里面,一执行collect方法就能出结果,那我们就从collect开始看吧,进入RDD,找到collect方法. def collect(): Array[T] = { val results = sc.runJob(this, (iter: Iterator[T]) => iter.toArray) Array.concat(results: _*) } 它进行了…
标签(空格分隔): Spark 作业提交 先回顾一下WordCount的过程: sc.textFile("README.rd").flatMap(line => line.split(" ")).map(word => (word, 1)).reduceByKey(_+_) 步骤一:val rawFile = sc.textFile("README.rd") texyFile先生成HadoopRDD --> MappedRDD:…
一个很久之前写的Spark作业,当时运行在local模式下.最近又开始处理这方面数据了,就打包提交集群,结果频频空指针.最开始以为是程序中有null调用了,经过排除发现是继承App导致集群运行时候无法反射获取main方法. 这个问题不难,起始我们也知道提交作业时候不能继承App,源码也看过这一部分,容易被混淆是程序的错.错误如下: Exception in thread "main" org.apache.spark.SparkException: Job aborted due to…
本节内容 · spark底层执行机制 · 细说RDD构建过程 · Job Stage的划分算法 · Task最佳计算位置算法 一.spark底层执行机制 对于Spark底层的运行原理,找到了一副很好的图,先贴上 客户端提交应用后,spark是如何执行的要有一个整体的概念,做到心中有数,先整体把握,才能更好的分模块开垦细节,废话不多说,先来看该图如何更好的理解. 1)提交前的联系 Worker向Master或则ResourceManager汇报自己有哪些资源(内存.CPU.磁盘空间.网络等),Ma…
在本地IDE里直接运行spark程序操作远程集群 一般运行spark作业的方式有两种: 本机调试,通过设置master为local模式运行spark作业,这种方式一般用于调试,不用连接远程集群. 集群运行.一般本机调试通过后会将作业打成jar包通过spark-submit提交运行.生产环境一般使用这种方式. 操作方法 1.设置master 两种方式: 在程序中设置 SparkConf conf = new SparkConf() .setAppName("helloworld") .s…
Spark的运行模式是多种多样的,那么在这篇博客中谈一下Spark的运行模式 一:Spark On Local 此种模式下,我们只需要在安装Spark时不进行hadoop和Yarn的环境配置,只要将Spark包解压即可使用,运行时Spark目录下的bin目录执行bin/spark-shell即可 具体可参考这篇博客:http://blog.csdn.net/happyanger6/article/details/47070223 二:Spark On Local Cluster(Spark St…
DAGScheduler的主要作用有2个: 一.把job划分成多个Stage(Stage内部并行运行,整个作业按照Stage的顺序依次执行) 二.提交任务 以下分别介绍下DAGScheduler是如何做这2件事情的,然后再跟源码看下DAGScheduler的实现. 一.如何把Job划分成多个Stage 1) 回顾下宽依赖和窄依赖 窄依赖:父RDD的每个分区只被子RDD的一个分区使用.(map,filter,union操作等) 宽依赖:父RDD的分区可能被多个子RDD的分区使用.(reduceBy…