局部加权线性回归  [转载时请注明来源]:http://www.cnblogs.com/runner-ljt/ Ljt 作为一个初学者,水平有限,欢迎交流指正. 线性回归容易出现过拟合或欠拟合的问题. 局部加权线性回归是一种非参数学习方法,在对新样本进行预测时,会根据新的权值,重新训练样本数据得到新的参数值,每一次预测的参数值是不相同的. 权值函数: t用来控制权值的变化速率(建议对于不同的样本,先通过调整t值确定合适的t) 不同t值下的权值函数图像: 局部加权线性回归R实现: #Local…
(整理自AndrewNG的课件,转载请注明.整理者:华科小涛@http://www.cnblogs.com/hust-ghtao/) 前面几篇博客主要介绍了线性回归的学习算法,那么它有什么不足的地方么?怎么改进呢?这就是本篇的主题. 为了引出问题,先看一个关于线性的例子,选取不同的特征会得到不同结果.考虑给定一组数据,我们要进行线性回归,得到和之间的关系.提出了三种不同的特征的选择方式,结果如下: 左图,选取一个特征,假设为,我们可以看到数据不能很好的和数据相吻合. 中图,我们选取了两个特征和,…
首先我们来看一个线性回归的问题,在下面的例子中,我们选取不同维度的特征来对我们的数据进行拟合. 对于上面三个图像做如下解释: 选取一个特征,来拟合数据,可以看出来拟合情况并不是很好,有些数据误差还是比较大 针对第一个,我们增加了额外的特征,,这时我们可以看出情况就好了很多. 这个时候可能有疑问,是不是特征选取的越多越好,维度越高越好呢?所以针对这个疑问,如最右边图,我们用5揭多项式使得数据点都在同一条曲线上,为.此时它对于训练集来说做到了很好的拟合效果,但是,我们不认为它是一个好的假设,因为它不…
We turn next to the task of finding a weight vector w which minimizes the chosen function E(w). Because there is clearly no hope of finding an anlytical solution to the equation ∂E(w)=0, we resort to iterative numerical procedures. On-line gradient d…
梯度下降法 ​ 下面的h(x)是要拟合的函数,J(θ)损失函数,theta是参数,要迭代求解的值,theta求解出来了那最终要拟合的函数h(θ)就出来了.其中m是训练集的记录条数,j是参数的个数. 梯度下降法流程: (1)先对θ随机赋值,可以是一个全零的向量. (2)改变θ的值,使J(θ)按梯度下降的方向减少. 以上式为例: (1)对于我们的函数J(θ)求关于θ的偏导: (2)下面是更新的过程,也就是θi会向着梯度最小的方向进行减少.θi表示更新之前的值,-后面的部分表示按梯度方向减少的量,α表…
通常我们使用的最小二乘都需要预先设定一个模型,然后通过最小二乘方法解出模型的系数. 而大多数情况是我们是不知道这个模型的,比如这篇博客中z=ax^2+by^2+cxy+dx+ey+f 这样的模型. 局部加权线性最小二乘就不需要我们预先知道待求解的模型,因为该方法是基于多个线性函数的叠加,最终只用到了线性模型. 计算线性模型时引入了一个加权函数: 来给当前预测数据分配权重,分配机制是:给距离近的点更高的权重,给距离远的点更低的权重. 公式中的k类似与高斯函数中的sigma. 当sigma变大时,函…
sklearn中实现随机梯度下降法 随机梯度下降法是一种根据模拟退火的原理对损失函数进行最小化的一种计算方式,在sklearn中主要用于多元线性回归算法中,是一种比较高效的最优化方法,其中的梯度下降系数(即学习率eta)随着遍历过程的进行在不断地减小.另外,在运用随机梯度下降法之前需要利用sklearn的StandardScaler将数据进行标准化. #sklearn中实现随机梯度下降多元线性回归 #1-1导入相应的数据模块import numpy as npimport matplotlib.…
1.前言 这几种方法呢都是在求最优解中常常出现的方法,主要是应用迭代的思想来逼近.在梯度下降算法中.都是环绕下面这个式子展开: 当中在上面的式子中hθ(x)代表.输入为x的时候的其当时θ參数下的输出值,与y相减则是一个相对误差.之后再平方乘以1/2,而且当中 注意到x能够一维变量.也能够是多维变量,实际上最经常使用的还是多维变量. 我们知道曲面上方向导数的最大值的方向就代表了梯度的方向,因此我们在做梯度下降的时候.应该是沿着梯度的反方向进行权重的更新.能够有效的找到全局的最优解. 这个θ的更新过…
airfoil4755 下载 链接:https://pan.baidu.com/s/1YEtNjJ0_G9eeH6A6vHXhnA 提取码:dwjq 梯度下降 (Boyd & Vandenberghe, 2004) %matplotlib inline import numpy as np import torch import time from torch import nn, optim import math import sys sys.path.append('/home/kesci…
线性回归 首先要明白什么是回归.回归的目的是通过几个已知数据来预测另一个数值型数据的目标值. 假设特征和结果满足线性关系,即满足一个计算公式h(x),这个公式的自变量就是已知的数据x,函数值h(x)就是要预测的目标值.这一计算公式称为回归方程,得到这个方程的过程就称为回归. 假设房子的房屋面积和卧室数量为自变量x,用x1表示房屋面积,x2表示卧室数量:房屋的交易价格为因变量y,我们用h(x)来表示y.假设房屋面积.卧室数量与房屋的交易价格是线性关系. 他们满足公式 上述公式中的θ为参数,也称为权…